Learn R Programming

bartMachine (version 1.3.4.1)

Bayesian Additive Regression Trees

Description

An advanced implementation of Bayesian Additive Regression Trees with expanded features for data analysis and visualization.

Copy Link

Version

Install

install.packages('bartMachine')

Monthly Downloads

1,673

Version

1.3.4.1

License

GPL-3

Maintainer

Adam Kapelner

Last Published

July 6th, 2023

Functions in bartMachine (1.3.4.1)

check_bart_error_assumptions

Check BART Error Assumptions
get_sigsqs

Get Posterior Error Variance Estimates
destroy_bart_machine

Destroy BART Model (deprecated --- do not use!)
dummify_data

Dummify Design Matrix
cov_importance_test

Importance Test for Covariate(s) of Interest
extract_raw_node_data

Gets Raw Node data
get_projection_weights

Gets Training Sample Projection / Weights
investigate_var_importance

Explore Variable Inclusion Proportions in BART Model
get_var_counts_over_chain

Get the Variable Inclusion Counts
k_fold_cv

Estimate Out-of-sample Error with K-fold Cross validation
pd_plot

Partial Dependence Plot
plot_convergence_diagnostics

Plot Convergence Diagnostics
summary.bartMachine

Summarizes information about a bartMachine object.
rmse_by_num_trees

Assess the Out-of-sample RMSE by Number of Trees
set_bart_machine_num_cores

Set the Number of Cores for BART
predict_bartMachineArr

Make a prediction on data using a BART array object
var_selection_by_permute_cv

Perform Variable Selection Using Cross-validation Procedure
plot_y_vs_yhat

Plot the fitted Versus Actual Response
predict.bartMachine

Make a prediction on data using a BART object
var_selection_by_permute

Perform Variable Selection using Three Threshold-based Procedures
print.bartMachine

Summarizes information about a bartMachine object.
get_var_props_over_chain

Get the Variable Inclusion Proportions
interaction_investigator

Explore Pairwise Interactions in BART Model
linearity_test

Test of Linearity
node_prediction_training_data_indices

Gets node predictions indices of the training data for new data.
automobile

Data concerning automobile prices.
bartMachineArr

Create an array of BART models for the same data.
bart_machine_get_posterior

Get Full Posterior Distribution
calc_credible_intervals

Calculate Credible Intervals
calc_prediction_intervals

Calculate Prediction Intervals
bart_machine_num_cores

Get Number of Cores Used by BART
bartMachineCV

Build BART-CV
bart_predict_for_test_data

Predict for Test Data with Known Outcomes
bartMachine

Build a BART Model
benchmark_datasets

benchmark_datasets