
EDcomp(object, percVec, percMat = NULL, compMatch = NULL, od = FALSE, vcov. = vcov, reverse = FALSE, interval = c("none", "delta", "fieller", "fls"), level = ifelse(!(interval == "none"), 0.95, NULL), reference = c("control", "upper"), type = c("relative", "absolute"), display = TRUE, pool = TRUE, logBase = NULL, multcomp = FALSE, ...) relpot(object, plotit = TRUE, compMatch = NULL, percVec = NULL, interval = "none", type = c("relative", "absolute"), scale = c("original", "percent", "unconstrained"), ...)
percVec
to be compared.
By default all pairs are compared.vcov
is the default,
but sandwich
is also an option (for obtaining robust standard errors).logistic
or llogistic2
models); currently
the argument logBase
then also needs to be specified.drm
.SI
: additional arguments to the function doing the calculations.
For instance the upper limit for the bisection method
needs to be larger than the ED values used in the required relative pontency.
In relpot
: additional graphical parameters.parm
in the package multcomp (in case the argument multcomp
is TRUE).
relpot
is a convenience function, which is useful for assessing how the relative potency
changes as a function of the response level (e.g., for plotting as outlined by Ritz et al (2006)).
Fieller's theorem is incorporated using the formulas provided by Kotz and Johnson (1983) and Finney (1978).For objects of class 'braincousens' or 'mlogistic' the additional argument may be the 'upper' argument or the 'interval' argument. The 'upper' argument specifies the upper limit of the bisection method. The upper limits needs to be larger than the EDx level to be calculated. The default limit is 1000. The 'interval' argument should specify a rough interval in which the dose yielding the maximum hormetical response lies. The default interval is 'c(0.001, 1000)'. Notice that the lower limit should not be set to 0 (use something like 1e-3, 1e-6, ...).
Kotz, S. and Johnson, N. L. (1983) Encyclopedia of Statistical Sciences Volume 3, New York: Wiley \& Sons (pp. 86--87). Ritz, C. and Cedergreen, N. and Jensen, J. E. and Streibig, J. C. (2006) Relative potency in nonsimilar dose-response curves, Weed Science, 54, 407--412.
ED.drc
(used for calculating effective doses).
spinach.LL.4 <- drm(SLOPE~DOSE, CURVE, data = spinach, fct = LL.4())
EDcomp(spinach.LL.4, c(50,50))
EDcomp(spinach.LL.4, c(10,50))
EDcomp(spinach.LL.4, c(10,50), reverse = TRUE)
## Using the package multcomp
#sires <- SI(spinach.LL.4, c(25, 50, 75))
#library(multcomp)
#summary(glht(parm(sires[[2]][[1]], sires[[2]][[2]]), rhs = 1))
## Comparing specific ratios: 25/25, 50/50, 75/75
#sires2 <- SI(spinach.LL.4, c(25, 50, 75), matrix(c(1, 1, 2, 2, 3, 3), 3, 2, byrow = TRUE))
#library(multcomp)
#summary(glht(parm(sires2[[2]][[1]], sires2[[2]][[2]]), rhs = 1))
## Relative potency of two herbicides
m2 <- drm(DryMatter~Dose, Herbicide,
data = S.alba, fct = LL.3())
EDcomp(m2, c(50, 50))
EDcomp(m2, c(50, 50), interval = "delta")
EDcomp(m2, c(50, 50), interval = "fieller")
## Comparison based on an absolute
## response level
m3 <- drm(SLOPE~DOSE, CURVE,
data = spinach, fct = LL.4())
EDcomp(m3, c(0.5,0.5), compMatch = c(2,4), type = "absolute", interval = "fieller")
EDcomp(m3, c(55,80), compMatch = c(2,4))
# same comparison using a relative response level
## Relative potency transformed from log scale
m4 <- drm(drymatter~log(dose), treatment, data=G.aparine[-c(1:40), ],
pmodels = data.frame(treatment,treatment,1,treatment), fct = LL2.4())
EDcomp(m4, c(50,50), interval = "fls", logBase = exp(1))
Run the code above in your browser using DataLab