Learn R Programming

hydroGOF (version 0.6-0)

gof: Numerical Goodness-of-fit measures

Description

Numerical goodness-of-fit measures between sim and obs, with treatment of missing values. Several performance indices for comparing two vectors, matrices or data.frames

Usage

gof(sim, obs, ...)

# S3 method for default gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE, j=1, lambda=0.95, norm="sd", s=c(1,1,1), method=c("2009", "2012", "2021"), lQ.thr=0.6, hQ.thr=0.1, start.month=1, digits=2, fun=NULL, ..., epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"), epsilon.value=NA)

# S3 method for matrix gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE, j=1, lambda=0.95, norm="sd", s=c(1,1,1), method=c("2009", "2012", "2021"), lQ.thr=0.6, hQ.thr=0.1, start.month=1, digits=2, fun=NULL, ..., epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"), epsilon.value=NA)

# S3 method for data.frame gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE, j=1, lambda=0.95, norm="sd", s=c(1,1,1), method=c("2009", "2012", "2021"), lQ.thr=0.6, hQ.thr=0.1, start.month=1, digits=2, fun=NULL, ..., epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"), epsilon.value=NA)

# S3 method for zoo gof(sim, obs, na.rm=TRUE, do.spearman=FALSE, do.pbfdc=FALSE, j=1, lambda=0.95, norm="sd", s=c(1,1,1), method=c("2009", "2012", "2021"), lQ.thr=0.6, hQ.thr=0.1, start.month=1, digits=2, fun=NULL, ..., epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"), epsilon.value=NA)

Value

The output of the gof function is a matrix with one column only, and the following rows:

ME

Mean Error

MAE

Mean Absolute Error

MSE

Mean Squared Error

RMSE

Root Mean Square Error

ubRMSE

Unbiased Root Mean Square Error

NRMSE

Normalized Root Mean Square Error ( -100% <= NRMSE <= 100% )

PBIAS

Percent Bias ( -Inf <= PBIAS <= Inf [%] )

RSR

Ratio of RMSE to the Standard Deviation of the Observations, RSR = rms / sd(obs). ( 0 <= RSR <= +Inf )

rSD

Ratio of Standard Deviations, rSD = sd(sim) / sd(obs)

NSE

Nash-Sutcliffe Efficiency ( -Inf <= NSE <= 1 )

mNSE

Modified Nash-Sutcliffe Efficiency ( -Inf <= mNSE <= 1 )

rNSE

Relative Nash-Sutcliffe Efficiency ( -Inf <= rNSE <= 1 )

wNSE

Weighted Nash-Sutcliffe Efficiency ( -Inf <= wNSE <= 1 )

wsNSE

Weighted Seasonal Nash-Sutcliffe Efficiency ( -Inf <= wsNSE <= 1 )

d

Index of Agreement ( 0 <= d <= 1 )

dr

Refined Index of Agreement ( -1 <= dr <= 1 )

md

Modified Index of Agreement ( 0 <= md <= 1 )

rd

Relative Index of Agreement ( 0 <= rd <= 1 )

cp

Persistence Index ( 0 <= cp <= 1 )

r

Pearson Correlation coefficient ( -1 <= r <= 1 )

R2

Coefficient of Determination ( 0 <= R2 <= 1 )

bR2

R2 multiplied by the coefficient of the regression line between sim and obs
( 0 <= bR2 <= 1 )

VE

Volumetric efficiency between sim and obs
( -Inf <= VE <= 1)

KGE

Kling-Gupta efficiency between sim and obs
( -Inf <= KGE <= 1 )

KGElf

Kling-Gupta Efficiency for low values between sim and obs
( -Inf <= KGElf <= 1 )

KGEnp

Non-parametric version of the Kling-Gupta Efficiency between sim and obs
( -Inf <= KGEnp <= 1 )

KGEkm

Knowable Moments Kling-Gupta Efficiency between sim and obs
( -Inf <= KGEnp <= 1 )

The following outputs are only produced when both sim and obs are zoo objects:

sKGE

Split Kling-Gupta Efficiency between sim and obs
( -Inf <= sKGE <= 1 ). Only computed when both sim and obs are zoo objects

APFB

Annual Peak Flow Bias ( 0 <= APFB <= Inf )

HBF

High Flow Bias ( 0 <= HFB <= Inf )

r.Spearman

Spearman Correlation coefficient ( -1 <= r.Spearman <= 1 ). Only computed when do.spearman=TRUE

pbiasfdc

PBIAS in the slope of the midsegment of the Flow Duration Curve

Arguments

sim

numeric, zoo, matrix or data.frame with simulated values

obs

numeric, zoo, matrix or data.frame with observed values

na.rm

a logical value indicating whether 'NA' should be stripped before the computation proceeds.
When an 'NA' value is found at the i-th position in obs OR sim, the i-th value of obs AND sim are removed before the computation.

do.spearman

logical. Indicates if the Spearman correlation has to be computed. The default is FALSE.

do.pbfdc

logical. Indicates if the Percent Bias in the Slope of the midsegment of the Flow Duration Curve (pbiasfdc) has to be computed. The default is FALSE.

j

argument passed to the mNSE and wsNSE functions.

lambda

argument passed to the wsNSE function.

norm

argument passed to the nrmse function

s

argument passed to the KGE, KGElf, sKGE and KGEkm functions.

method

argument passed to the KGE, KGElf, sKGE and KGEkm functions.

lQ.thr

[OPTIONAL]. Only used for the computation of the pbiasFDC % (with the pbiasfdc function) and the weighted seasonal Nash-Sutcliffe Efficiency (with the wsNSE function.

hQ.thr

[OPTIONAL]. Only used for the computation of the pbiasFDC % (with the pbiasfdc function), the high flow bias (HFB, with the HFB function) and the weighted seasonal Nash-Sutcliffe Efficiency (with the wsNSE function.

start.month

[OPTIONAL]. Only used for the computation of the split KGE (sKGE), annual peak flow bias (APFB) and high flow bias (HFB) when the (hydrological) year of interest is different from the calendar year.

numeric in [1:12] indicating the starting month of the (hydrological) year. Numeric values in [1, 12] represent months in [January, December]. By default start.month=1.

digits

decimal places used for rounding the goodness-of-fit indexes.

fun

function to be applied to sim and obs in order to obtain transformed values thereof before computing the all the goodness-of-fit functions.

The first argument MUST BE a numeric vector with any name (e.g., x), and additional arguments are passed using ....

...

arguments passed to fun, in addition to the mandatory first numeric vector.

epsilon.type

argument used to define a numeric value to be added to both sim and obs before applying fun.

It is was designed to allow the use of logarithm and other similar functions that do not work with zero values.

Valid values of epsilon.type are:

1) "none": sim and obs are used by FUN without the addition of any nummeric value.

2) "Pushpalatha2012": one hundredth (1/100) of the mean observed values is added to both sim and obs before applying FUN, as described in Pushpalatha et al. (2012).

3) "otherFactor": the numeric value defined in the epsilon.value argument is used to multiply the the mean observed values, instead of the one hundredth (1/100) described in Pushpalatha et al. (2012). The resulting value is then added to both sim and obs, before applying FUN.

4) "otherValue": the numeric value defined in the epsilon.value argument is directly added to both sim and obs, before applying FUN.

epsilon.value

-) when epsilon.type="otherValue" it represents the numeric value to be added to both sim and obs before applying fun.
-) when epsilon.type="otherFactor" it represents the numeric factor used to multiply the mean of the observed values, instead of the one hundredth (1/100) described in Pushpalatha et al. (2012). The resulting value is then added to both sim and obs before applying fun.

Author

Mauricio Zambrano Bigiarini <mzb.devel@gmail.com>

References

Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. (2009), Assessing the impact of climate change on water resources in Iran, Water Resources Research, 45(10), W10,434, doi:10.1029/2008WR007615.

Abbaspour, K.C., Yang, J. ; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J. ; Zobrist, J.; Srinivasan, R. (2007), Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, Journal of Hydrology, 333(2-4), 413-430, doi:10.1016/j.jhydrol.2006.09.014.

Box, G.E. (1966). Use and abuse of regression. Technometrics, 8(4), 625-629. doi:10.1080/00401706.1966.10490407.

Barrett, J.P. (1974). The coefficient of determination-some limitations. The American Statistician, 28(1), 19-20. doi:10.1080/00031305.1974.10479056.

Chai, T.; Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature, Geoscientific Model Development, 7, 1247-1250. doi:10.5194/gmd-7-1247-2014.

Cinkus, G.; Mazzilli, N.; Jourde, H.; Wunsch, A.; Liesch, T.; Ravbar, N.; Chen, Z.; and Goldscheider, N. (2023). When best is the enemy of good - critical evaluation of performance criteria in hydrological models. Hydrology and Earth System Sciences 27, 2397-2411, doi:10.5194/hess-27-2397-2023.

Criss, R. E.; Winston, W. E. (2008), Do Nash values have value? Discussion and alternate proposals. Hydrological Processes, 22: 2723-2725. doi:10.1002/hyp.7072.

Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. (2010). Performance metrics for soil moisture retrievals and application requirements. Journal of Hydrometeorology, 11(3), 832-840. doi: 10.1175/2010JHM1223.1.

Fowler, K.; Coxon, G.; Freer, J.; Peel, M.; Wagener, T.; Western, A.; Woods, R.; Zhang, L. (2018). Simulating runoff under changing climatic conditions: A framework for model improvement. Water Resources Research, 54(12), 812-9832. doi:10.1029/2018WR023989.

Garcia, F.; Folton, N.; Oudin, L. (2017). Which objective function to calibrate rainfall-runoff models for low-flow index simulations?. Hydrological sciences journal, 62(7), 1149-1166. doi:10.1080/02626667.2017.1308511.

Garrick, M.; Cunnane, C.; Nash, J.E. (1978). A criterion of efficiency for rainfall-runoff models. Journal of Hydrology 36, 375-381. doi:10.1016/0022-1694(78)90155-5.

Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003. ISSN 0022-1694.

Gupta, H.V.; Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics. Water Resources Research, 47(10). doi:10.1029/2011WR010962.

Hahn, G.J. (1973). The coefficient of determination exposed. Chemtech, 3(10), 609-612. Aailable online at: https://www2.hawaii.edu/~cbaajwe/Ph.D.Seminar/Hahn1973.pdf.

Hodson, T.O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not, Geoscientific Model Development, 15, 5481-5487, doi:10.5194/gmd-15-5481-2022.

Hundecha, Y., Bardossy, A. (2004). Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. Journal of hydrology, 292(1-4), 281-295. doi:10.1016/j.jhydrol.2004.01.002.

Kitanidis, P.K.; Bras, R.L. (1980). Real-time forecasting with a conceptual hydrologic model. 2. Applications and results. Water Resources Research, Vol. 16, No. 6, pp. 1034:1044. doi:10.1029/WR016i006p01034.

Kling, H.; Fuchs, M.; Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424, 264-277, doi:10.1016/j.jhydrol.2012.01.011.

Knoben, W.J.; Freer, J.E.; Woods, R.A. (2019). Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-4331. doi:10.5194/hess-23-4323-2019.

Krause, P.; Boyle, D.P.; Base, F. (2005). Comparison of different efficiency criteria for hydrological model assessment, Advances in Geosciences, 5, 89-97. doi:10.5194/adgeo-5-89-2005.

Krstic, G.; Krstic, N.S.; Zambrano-Bigiarini, M. (2016). The br2-weighting Method for Estimating the Effects of Air Pollution on Population Health. Journal of Modern Applied Statistical Methods, 15(2), 42. doi:10.22237/jmasm/1478004000

Legates, D.R.; McCabe, G. J. Jr. (1999), Evaluating the Use of "Goodness-of-Fit" Measures in Hydrologic and Hydroclimatic Model Validation, Water Resour. Res., 35(1), 233-241. doi:10.1029/1998WR900018.

Ling, X.; Huang, Y.; Guo, W.; Wang, Y.; Chen, C.; Qiu, B.; Ge, J.; Qin, K.; Xue, Y.; Peng, J. (2021). Comprehensive evaluation of satellite-based and reanalysis soil moisture products using in situ observations over China. Hydrology and Earth System Sciences, 25(7), 4209-4229. doi:10.5194/hess-25-4209-2021.

Mizukami, N.; Rakovec, O.; Newman, A.J.; Clark, M.P.; Wood, A.W.; Gupta, H.V.; Kumar, R.: (2019). On the choice of calibration metrics for "high-flow" estimation using hydrologic models, Hydrology Earth System Sciences 23, 2601-2614, doi:10.5194/hess-23-2601-2019.

Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 50(3):885-900

Nash, J.E. and Sutcliffe, J.V. (1970). River flow forecasting through conceptual models. Part 1: a discussion of principles, Journal of Hydrology 10, pp. 282-290. doi:10.1016/0022-1694(70)90255-6.

Pearson, K. (1920). Notes on the history of correlation. Biometrika, 13(1), 25-45. doi:10.2307/2331722.

Pfannerstill, M.; Guse, B.; Fohrer, N. (2014). Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology, 510, 447-458. doi:10.1016/j.jhydrol.2013.12.044.

Pizarro, A.; Jorquera, J. (2024). Advancing objective functions in hydrological modelling: Integrating knowable moments for improved simulation accuracy. Journal of Hydrology, 634, 131071. doi:10.1016/j.jhydrol.2024.131071.

Pool, S.; Vis, M.; Seibert, J. (2018). Evaluating model performance: towards a non-parametric variant of the Kling-Gupta efficiency. Hydrological Sciences Journal, 63(13-14), pp.1941-1953. doi:/10.1080/02626667.2018.1552002.

Pushpalatha, R.; Perrin, C.; Le Moine, N.; Andreassian, V. (2012). A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology, 420, 171-182. doi:10.1016/j.jhydrol.2011.11.055.

Santos, L.; Thirel, G.; Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGE criterion. doi:10.5194/hess-22-4583-2018.

Schaefli, B., Gupta, H. (2007). Do Nash values have value?. Hydrological Processes 21, 2075-2080. doi:10.1002/hyp.6825.

Schober, P.; Boer, C.; Schwarte, L.A. (2018). Correlation coefficients: appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763-1768. doi:10.1213/ANE.0000000000002864.

Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. (2008b), Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model, Journal of Hydrology, 352(1-2), 30, doi:10.1016/j.jhydrol.2007.12.025

Sorooshian, S., Q. Duan, and V. K. Gupta. (1993). Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model, Water Resources Research, 29 (4), 1185-1194, doi:10.1029/92WR02617.

Spearman, C. (1961). The Proof and Measurement of Association Between Two Things. In J. J. Jenkins and D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (pp. 45-58). Appleton-Century-Crofts. doi:10.1037/11491-005

Tang, G.; Clark, M.P.; Papalexiou, S.M. (2021). SC-earth: a station-based serially complete earth dataset from 1950 to 2019. Journal of Climate, 34(16), 6493-6511. doi:10.1175/JCLI-D-21-0067.1.

Yapo P.O.; Gupta H.V.; Sorooshian S. (1996). Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology. v181 i1-4. 23-48. doi:10.1016/0022-1694(95)02918-4

Yilmaz, K.K., Gupta, H.V. ; Wagener, T. (2008), A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model, Water Resources Research, 44, W09417, doi:10.1029/2007WR006716.

Willmott, C.J. (1981). On the validation of models. Physical Geography, 2, 184--194. doi:10.1080/02723646.1981.10642213.

Willmott, C.J. (1984). On the evaluation of model performance in physical geography. Spatial Statistics and Models, G. L. Gaile and C. J. Willmott, eds., 443-460. doi:10.1007/978-94-017-3048-8_23.

Willmott, C.J.; Ackleson, S.G. Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O'Donnell, J.; Rowe, C.M. (1985), Statistics for the Evaluation and Comparison of Models, J. Geophys. Res., 90(C5), 8995-9005. doi:10.1029/JC090iC05p08995.

Willmott, C.J.; Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Climate Research, 30, 79-82, doi:10.3354/cr030079.

Willmott, C.J.; Matsuura, K.; Robeson, S.M. (2009). Ambiguities inherent in sums-of-squares-based error statistics, Atmospheric Environment, 43, 749-752, doi:10.1016/j.atmosenv.2008.10.005.

Willmott, C.J.; Robeson, S.M.; Matsuura, K. (2012). A refined index of model performance. International Journal of climatology, 32(13), pp.2088-2094. doi:10.1002/joc.2419.

Willmott, C.J.; Robeson, S.M.; Matsuura, K.; Ficklin, D.L. (2015). Assessment of three dimensionless measures of model performance. Environmental Modelling & Software, 73, pp.167-174. doi:10.1016/j.envsoft.2015.08.012

Zambrano-Bigiarini, M.; Bellin, A. (2012). Comparing goodness-of-fit measures for calibration of models focused on extreme events. EGU General Assembly 2012, Vienna, Austria, 22-27 Apr 2012, EGU2012-11549-1.

See Also

ggof, me, mae, mse, rmse, ubRMSE, nrmse, pbias, rsr, rSD, NSE, mNSE, rNSE, wNSE, wsNSE, d, dr, md, rd, cp, rPearson, R2, br2, VE, KGE, KGElf, KGEnp, , KGEkm, sKGE, APFB, HFB, rSpearman, pbiasfdc

Examples

Run this code
##################
# Example 1: basic ideal case
obs <- 1:10
sim <- 1:10
gof(sim, obs)

obs <- 1:10
sim <- 2:11
gof(sim, obs)

##################
# Example 2: 
# Loading daily streamflows of the Ega River (Spain), from 1961 to 1970
data(EgaEnEstellaQts)
obs <- EgaEnEstellaQts

# Generating a simulated daily time series, initially equal to the observed series
sim <- obs 

# Computing the 'gof' for the "best" (unattainable) case
gof(sim=sim, obs=obs)

##################
# Example 3: gof for simulated values equal to observations plus random noise 
#            on the first half of the observed values. 
#            This random noise has more relative importance for low flows than 
#            for medium and high flows.
  
# Randomly changing the first 1826 elements of 'sim', by using a normal distribution 
# with mean 10 and standard deviation equal to 1 (default of 'rnorm').
sim[1:1826] <- obs[1:1826] + rnorm(1826, mean=10)
ggof(sim, obs)

gof(sim=sim, obs=obs)

##################
# Example 4: gof for simulated values equal to observations plus random noise 
#            on the first half of the observed values and applying (natural) 
#            logarithm to 'sim' and 'obs' during computations.

gof(sim=sim, obs=obs, fun=log)

# Verifying the previous value:
lsim <- log(sim)
lobs <- log(obs)
gof(sim=lsim, obs=lobs)

##################
# Example 5: gof for simulated values equal to observations plus random noise 
#            on the first half of the observed values and applying (natural) 
#            logarithm to 'sim' and 'obs' and adding the Pushpalatha2012 constant
#            during computations

gof(sim=sim, obs=obs, fun=log, epsilon.type="Pushpalatha2012")

# Verifying the previous value, with the epsilon value following Pushpalatha2012
eps  <- mean(obs, na.rm=TRUE)/100
lsim <- log(sim+eps)
lobs <- log(obs+eps)
gof(sim=lsim, obs=lobs)

##################
# Example 6: gof for simulated values equal to observations plus random noise 
#            on the first half of the observed values and applying (natural) 
#            logarithm to 'sim' and 'obs' and adding a user-defined constant
#            during computations

eps <- 0.01
gof(sim=sim, obs=obs, fun=log, epsilon.type="otherValue", epsilon.value=eps)

# Verifying the previous value:
lsim <- log(sim+eps)
lobs <- log(obs+eps)
gof(sim=lsim, obs=lobs)

##################
# Example 7: gof for simulated values equal to observations plus random noise 
#            on the first half of the observed values and applying (natural) 
#            logarithm to 'sim' and 'obs' and using a user-defined factor
#            to multiply the mean of the observed values to obtain the constant
#            to be added to 'sim' and 'obs' during computations

fact <- 1/50
gof(sim=sim, obs=obs, fun=log, epsilon.type="otherFactor", epsilon.value=fact)

# Verifying the previous value:
eps  <- fact*mean(obs, na.rm=TRUE)
lsim <- log(sim+eps)
lobs <- log(obs+eps)
gof(sim=lsim, obs=lobs)

##################
# Example 8: gof for simulated values equal to observations plus random noise 
#            on the first half of the observed values and applying a 
#            user-defined function to 'sim' and 'obs' during computations

fun1 <- function(x) {sqrt(x+1)}

gof(sim=sim, obs=obs, fun=fun1)

# Verifying the previous value, with the epsilon value following Pushpalatha2012
sim1 <- sqrt(sim+1)
obs1 <- sqrt(obs+1)
gof(sim=sim1, obs=obs1)

# Storing a matrix object with all the GoFs:
g <-  gof(sim, obs)

# Getting only the RMSE
g[4,1]
g["RMSE",]

if (FALSE) {
# Writing all the GoFs into a TXT file
write.table(g, "GoFs.txt", col.names=FALSE, quote=FALSE)

# Getting the graphical representation of 'obs' and 'sim' along with the 
# numeric goodness of fit 
ggof(sim=sim, obs=obs)
}

Run the code above in your browser using DataLab