x <- as.numeric(1:10)
n <- as.integer(10)
if (FALSE) {
## A simple Fortran example - n and x: assumed-size vector
code <- "
integer i
do 1 i=1, n(1)
1 x(i) = x(i)**3
"
cubefn <- cfunction(signature(n="integer", x="numeric"), code, convention=".Fortran")
print(cubefn)
cubefn(n, x)$x
## Same Fortran example - now n is one number
code2 <- "
integer i
do 1 i=1, n
1 x(i) = x(i)**3
"
cubefn2 <- cfunction(signature(n="integer", x="numeric"), implicit = "none",
dim = c("", "(*)"), code2, convention=".Fortran")
cubefn2(n, x)$x
## Same in F95, now x is fixed-size vector (length = n)
code3 <- "x = x*x*x"
cubefn3 <- cfunction(sig = signature(n="integer", x="numeric"), implicit = "none",
dim = c("", "(n)"), code3, language="F95")
cubefn3(20, 1:20)
print(cubefn3)
## Same example in C
code4 <- "
int i;
for (i = 0; i < *n; i++)
x[i] = x[i]*x[i]*x[i];
"
cubefn4 <- cfunction(signature(n="integer", x="numeric"), code4, language = "C", convention = ".C")
cubefn4(20, 1:20)
## Give the function in the source code a name
cubefn5 <- cfunction(signature(n="integer", x="numeric"), code4, language = "C", convention = ".C",
name = "cubefn")
code(cubefn5)
}
## use of a module in F95
modct <- "module modcts
double precision, parameter :: pi = 3.14159265358979
double precision, parameter :: e = 2.71828182845905
end"
getconstants <- "x(1) = pi
x(2) = e"
cgetcts <- cfunction(getconstants, module = "modcts", implicit = "none",
includes = modct, sig = c(x = "double"), dim = c("(2)"), language = "F95")
cgetcts(x = 1:2)
print(cgetcts)
## Use of .C convention with C code
## Defining two functions, one of which calls the other
sigSq <- signature(n="integer", x="numeric")
codeSq <- "
for (int i=0; i < *n; i++) {
x[i] = x[i]*x[i];
}"
sigQd <- signature(n="integer", x="numeric")
codeQd <- "
squarefn(n, x);
squarefn(n, x);
"
fns <- cfunction( list(squarefn=sigSq, quadfn=sigQd),
list(codeSq, codeQd),
convention=".C")
squarefn <- fns[["squarefn"]]
quadfn <- fns[["quadfn"]]
squarefn(n, x)$x
quadfn(n, x)$x
## Alternative declaration using 'setCMethod'
setCMethod(c("squarefn", "quadfn"), list(sigSq, sigQd),
list(codeSq, codeQd), convention=".C")
squarefn(n, x)$x
quadfn(n, x)$x
## Use of .Call convention with C code
## Multyplying each image in a stack with a 2D Gaussian at a given position
code <- "
SEXP res;
int nprotect = 0, nx, ny, nz, x, y;
PROTECT(res = Rf_duplicate(a)); nprotect++;
nx = INTEGER(GET_DIM(a))[0];
ny = INTEGER(GET_DIM(a))[1];
nz = INTEGER(GET_DIM(a))[2];
double sigma2 = REAL(s)[0] * REAL(s)[0], d2 ;
double cx = REAL(centre)[0], cy = REAL(centre)[1], *data, *rdata;
for (int im = 0; im < nz; im++) {
data = &(REAL(a)[im*nx*ny]); rdata = &(REAL(res)[im*nx*ny]);
for (x = 0; x < nx; x++)
for (y = 0; y < ny; y++) {
d2 = (x-cx)*(x-cx) + (y-cy)*(y-cy);
rdata[x + y*nx] = data[x + y*nx] * exp(-d2/sigma2);
}
}
UNPROTECT(nprotect);
return res;
"
funx <- cfunction(signature(a="array", s="numeric", centre="numeric"), code)
x <- array(runif(50*50), c(50,50,1))
res <- funx(a=x, s=10, centre=c(25,15))
if (interactive()) image(res[,,1])
## Same but done by registering an S4 method
setCMethod("funy", signature(a="array", s="numeric", centre="numeric"), code, verbose=TRUE)
res <- funy(x, 10, c(35,35))
if (interactive()) { x11(); image(res[,,1]) }
Run the code above in your browser using DataLab