Learn R Programming

readr (version 1.0.0)

read_delim: Read a delimited file into a data frame.

Description

read_csv and read_tsv are special cases of the general read_delim. They're useful for reading the most common types of flat file data, comma separated values and tab separated values, respectively. read_csv2 uses ; for separators, instead of ,. This is common in European countries which use , as the decimal separator.

Usage

read_delim(file, delim, quote = "\"", escape_backslash = FALSE, escape_double = TRUE, col_names = TRUE, col_types = NULL, locale = default_locale(), na = c("", "NA"), quoted_na = TRUE, comment = "", trim_ws = FALSE, skip = 0, n_max = Inf, guess_max = min(1000, n_max), progress = interactive())
read_csv(file, col_names = TRUE, col_types = NULL, locale = default_locale(), na = c("", "NA"), quoted_na = TRUE, comment = "", trim_ws = TRUE, skip = 0, n_max = Inf, guess_max = min(1000, n_max), progress = interactive())
read_csv2(file, col_names = TRUE, col_types = NULL, locale = default_locale(), na = c("", "NA"), quoted_na = TRUE, comment = "", trim_ws = TRUE, skip = 0, n_max = Inf, guess_max = min(1000, n_max), progress = interactive())
read_tsv(file, col_names = TRUE, col_types = NULL, locale = default_locale(), na = c("", "NA"), quoted_na = TRUE, comment = "", trim_ws = TRUE, skip = 0, n_max = Inf, guess_max = min(1000, n_max), progress = interactive())

Arguments

file
Either a path to a file, a connection, or literal data (either a single string or a raw vector).

Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed. Files starting with http://, https://, ftp://, or ftps:// will be automatically downloaded. Remote gz files can also be automatically downloaded & decompressed.

Literal data is most useful for examples and tests. It must contain at least one new line to be recognised as data (instead of a path).

delim
Single character used to separate fields within a record.
quote
Single character used to quote strings.
escape_backslash
Does the file use backslashes to escape special characters? This is more general than escape_double as backslashes can be used to escape the delimeter character, the quote characer, or to add special characters like \n.
escape_double
Does the file escape quotes by doubling them? i.e. If this option is TRUE, the value """" represents a single quote, \".
col_names
Either TRUE, FALSE or a character vector of column names.

If TRUE, the first row of the input will be used as the column names, and will not be included in the data frame. If FALSE, column names will be generated automatically: X1, X2, X3 etc.

If col_names is a character vector, the values will be used as the names of the columns, and the first row of the input will be read into the first row of the output data frame.

Missing (NA) column names will generate a warning, and be filled in with dummy names X1, X2 etc. Duplicate column names will generate a warning and be made unique with a numeric prefix.

col_types
One of NULL, a cols specification, or a string. See vignette("column-types") for more details.

If NULL, all column types will be imputed from the first 1000 rows on the input. This is convenient (and fast), but not robust. If the imputation fails, you'll need to supply the correct types yourself.

If a column specification created by cols, it must contain one column specification for each column. If you only want to read a subset of the columns, use cols_only.

Alternatively, you can use a compact string representation where each character represents one column: c = character, i = integer, n = number, d = double, l = logical, D = date, T = date time, t = time, ? = guess, or _/- to skip the column.

locale
The locale controls defaults that vary from place to place. The default locale is US-centric (like R), but you can use locale to create your own locale that controls things like the default time zone, encoding, decimal mark, big mark, and day/month names.
na
Character vector of strings to use for missing values. Set this option to character() to indicate no missing values.
quoted_na
Should missing values inside quotes be treated as missing values (the default) or strings.
comment
A string used to identify comments. Any text after the comment characters will be silently ignored.
trim_ws
Should leading and trailing whitespace be trimmed from each field before parsing it?
skip
Number of lines to skip before reading data.
n_max
Maximum number of records to read.
guess_max
Maximum number of records to use for guessing column types.
progress
Display a progress bar? By default it will only display in an interactive session. The display is updated every 50,000 values and will only display if estimated reading time is 5 seconds or more.

Value

A data frame. If there are parsing problems, a warning tells you how many, and you can retrieve the details with problems().

Examples

Run this code
# Input sources -------------------------------------------------------------
# Read from a path
read_csv(readr_example("mtcars.csv"))
read_csv(readr_example("mtcars.csv.zip"))
read_csv(readr_example("mtcars.csv.bz2"))
read_csv("https://github.com/hadley/readr/raw/master/inst/extdata/mtcars.csv")

# Or directly from a string (must contain a newline)
read_csv("x,y\n1,2\n3,4")

# Column types --------------------------------------------------------------
# By default, readr guess the columns types, looking at the first 100 rows.
# You can override with a compact specification:
read_csv("x,y\n1,2\n3,4", col_types = "dc")

# Or with a list of column types:
read_csv("x,y\n1,2\n3,4", col_types = list(col_double(), col_character()))

# If there are parsing problems, you get a warning, and can extract
# more details with problems()
y <- read_csv("x\n1\n2\nb", col_types = list(col_double()))
y
problems(y)

# File types ----------------------------------------------------------------
read_csv("a,b\n1.0,2.0")
read_csv2("a;b\n1,0;2,0")
read_tsv("a\tb\n1.0\t2.0")
read_delim("a|b\n1.0|2.0", delim = "|")

Run the code above in your browser using DataLab