Learn R Programming

tfruns (version 1.5.2)

flags: Flags for a training run

Description

Define the flags (name, type, default value, description) which paramaterize a training run. Optionally read overrides of the default values from a "flags.yml" config file and/or command line arguments.

Usage

flags(
  ...,
  config = Sys.getenv("R_CONFIG_ACTIVE", unset = "default"),
  file = "flags.yml",
  arguments = commandArgs(TRUE)
)

flag_numeric(name, default, description = NULL)

flag_integer(name, default, description = NULL)

flag_boolean(name, default, description = NULL)

flag_string(name, default, description = NULL)

Value

Named list of training flags

Arguments

...

One or more flag definitions

config

The configuration to use. Defaults to the active configuration for the current environment (as specified by the R_CONFIG_ACTIVE environment variable), or default when unset.

file

The flags YAML file to read

arguments

The command line arguments (as a character vector) to be parsed.

name

Flag name

default

Flag default value

description

Flag description

Config File Flags

Config file flags are defined a YAML configuration file (by default named "flags.yml"). Flags can either appear at the top-level of the YAML or can be inclued in named configuration sections (see the config package for details).

Command Line Flags

Command line flags should be of the form --key=value or --key value. The values are assumed to be valid yaml and will be converted using yaml.load().

Examples

Run this code
if (FALSE) {
library(tfruns)

# define flags and parse flag values from flags.yml and the command line
FLAGS <- flags(
  flag_numeric('learning_rate', 0.01, 'Initial learning rate.'),
  flag_integer('max_steps', 5000, 'Number of steps to run trainer.'),
  flag_string('data_dir', 'MNIST-data', 'Directory for training data'),
  flag_boolean('fake_data', FALSE, 'If true, use fake data for testing')
)
}

Run the code above in your browser using DataLab