Learn R Programming

⚠️There's a newer version (0.22.0) of this package.Take me there.

parameters

Describe and understand your model’s parameters!

parameters’ primary goal is to provide utilities for processing the parameters of various statistical models (see here for a list of supported models). Beyond computing p-values, CIs, Bayesian indices and other measures for a wide variety of models, this package implements features like bootstrapping of parameters and models, feature reduction (feature extraction and variable selection), or tools for data reduction like functions to perform cluster, factor or principal component analysis.

Another important goal of the parameters package is to facilitate and streamline the process of reporting results of statistical models, which includes the easy and intuitive calculation of standardized estimates or robust standard errors and p-values. parameters therefor offers a simple and unified syntax to process a large variety of (model) objects from many different packages.

Installation

Run the following:

install.packages("parameters")
library("parameters")

Documentation

Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:

Contributing and Support

In case you want to file an issue or contribute in another way to the package, please follow this guide. For questions about the functionality, you may either contact us via email or also file an issue.

Features

Model’s parameters description

The model_parameters() function (that can be accessed via the parameters() shortcut) allows you to extract the parameters and their characteristics from various models in a consistent way. It can be considered as a lightweight alternative to broom::tidy(), with some notable differences:

  • The column names of the returned data frame are specific to their content. For instance, the column containing the statistic is named following the statistic name, i.e., t, z, etc., instead of a generic name such as statistic (however, you can get standardized (generic) column names using standardize_names()).
  • It is able to compute or extract indices not available by default, such as p-values, CIs, etc.
  • It includes feature engineering capabilities, including parameters bootstrapping.

Classical Regression Models

model <- lm(Sepal.Width ~ Petal.Length * Species + Petal.Width, data = iris)

# regular model parameters
model_parameters(model)
#> Parameter                           | Coefficient |   SE |         95% CI | t(143) |      p
#> -------------------------------------------------------------------------------------------
#> (Intercept)                         |        2.89 | 0.36 | [ 2.18,  3.60] |   8.01 | < .001
#> Petal.Length                        |        0.26 | 0.25 | [-0.22,  0.75] |   1.07 | 0.287 
#> Species [versicolor]                |       -1.66 | 0.53 | [-2.71, -0.62] |  -3.14 | 0.002 
#> Species [virginica]                 |       -1.92 | 0.59 | [-3.08, -0.76] |  -3.28 | 0.001 
#> Petal.Width                         |        0.62 | 0.14 | [ 0.34,  0.89] |   4.41 | < .001
#> Petal.Length * Species [versicolor] |       -0.09 | 0.26 | [-0.61,  0.42] |  -0.36 | 0.721 
#> Petal.Length * Species [virginica]  |       -0.13 | 0.26 | [-0.64,  0.38] |  -0.50 | 0.618

# standardized parameters
model_parameters(model, standardize = "refit")
#> Parameter                           | Coefficient |   SE |         95% CI | t(143) |      p
#> -------------------------------------------------------------------------------------------
#> (Intercept)                         |        3.59 | 1.30 | [ 1.01,  6.17] |   2.75 | 0.007 
#> Petal.Length                        |        1.07 | 1.00 | [-0.91,  3.04] |   1.07 | 0.287 
#> Species [versicolor]                |       -4.62 | 1.31 | [-7.21, -2.03] |  -3.53 | < .001
#> Species [virginica]                 |       -5.51 | 1.38 | [-8.23, -2.79] |  -4.00 | < .001
#> Petal.Width                         |        1.08 | 0.24 | [ 0.59,  1.56] |   4.41 | < .001
#> Petal.Length * Species [versicolor] |       -0.38 | 1.06 | [-2.48,  1.72] |  -0.36 | 0.721 
#> Petal.Length * Species [virginica]  |       -0.52 | 1.04 | [-2.58,  1.54] |  -0.50 | 0.618

Mixed Models

library(lme4)

model <- lmer(Sepal.Width ~ Petal.Length + (1|Species), data = iris)

# model parameters with CI, df and p-values based on Wald approximation
model_parameters(model)
#> Parameter    | Coefficient |   SE |       95% CI | t(146) |      p
#> ------------------------------------------------------------------
#> (Intercept)  |        2.00 | 0.56 | [0.90, 3.10] |   3.56 | < .001
#> Petal.Length |        0.28 | 0.06 | [0.17, 0.40] |   4.75 | < .001

# model parameters with CI, df and p-values based on Kenward-Roger approximation
model_parameters(model, df_method = "kenward")
#> Parameter    | Coefficient |   SE |       95% CI |    t |     df |      p
#> -------------------------------------------------------------------------
#> (Intercept)  |        2.00 | 0.57 | [0.07, 3.93] | 3.53 |   2.67 | 0.046 
#> Petal.Length |        0.28 | 0.06 | [0.16, 0.40] | 4.58 | 140.98 | < .001

Structural Models

Besides many types of regression models and packages, it also works for other types of models, such as structural models (EFA, CFA, SEM…).

library(psych)

model <- psych::fa(attitude, nfactors = 3)
model_parameters(model)
#> # Rotated loadings from Factor Analysis (oblimin-rotation)
#> 
#> Variable   |   MR1 |   MR2 |   MR3 | Complexity | Uniqueness
#> ------------------------------------------------------------
#> rating     |  0.90 | -0.07 | -0.05 |       1.02 |       0.23
#> complaints |  0.97 | -0.06 |  0.04 |       1.01 |       0.10
#> privileges |  0.44 |  0.25 | -0.05 |       1.64 |       0.65
#> learning   |  0.47 |  0.54 | -0.28 |       2.51 |       0.24
#> raises     |  0.55 |  0.43 |  0.25 |       2.35 |       0.23
#> critical   |  0.16 |  0.17 |  0.48 |       1.46 |       0.67
#> advance    | -0.11 |  0.91 |  0.07 |       1.04 |       0.22
#> 
#> The 3 latent factors (oblimin rotation) accounted for 66.60% of the total variance of the original data (MR1 = 38.19%, MR2 = 22.69%, MR3 = 5.72%).

Variable and parameters selection

select_parameters() can help you quickly select and retain the most relevant predictors using methods tailored for the model type.

library(dplyr)

lm(disp ~ ., data = mtcars) %>% 
  select_parameters() %>% 
  model_parameters()
#> Parameter   | Coefficient |     SE |            95% CI | t(26) |      p
#> -----------------------------------------------------------------------
#> (Intercept) |      141.70 | 125.67 | [-116.62, 400.02] |  1.13 | 0.270 
#> cyl         |       13.14 |   7.90 | [  -3.10,  29.38] |  1.66 | 0.108 
#> hp          |        0.63 |   0.20 | [   0.22,   1.03] |  3.18 | 0.004 
#> wt          |       80.45 |  12.22 | [  55.33, 105.57] |  6.58 | < .001
#> qsec        |      -14.68 |   6.14 | [ -27.31,  -2.05] | -2.39 | 0.024 
#> carb        |      -28.75 |   5.60 | [ -40.28, -17.23] | -5.13 | < .001

Miscellaneous

This packages also contains a lot of other useful functions:

Describe a Distribution

data(iris)
describe_distribution(iris)
#> Variable     | Mean |   SD |  IQR |        Range | Skewness | Kurtosis |   n | n_Missing
#> ----------------------------------------------------------------------------------------
#> Sepal.Length | 5.84 | 0.83 | 1.30 | [4.30, 7.90] |     0.31 |    -0.55 | 150 |         0
#> Sepal.Width  | 3.06 | 0.44 | 0.52 | [2.00, 4.40] |     0.32 |     0.23 | 150 |         0
#> Petal.Length | 3.76 | 1.77 | 3.52 | [1.00, 6.90] |    -0.27 |    -1.40 | 150 |         0
#> Petal.Width  | 1.20 | 0.76 | 1.50 | [0.10, 2.50] |    -0.10 |    -1.34 | 150 |         0

Citation

In order to cite this package, please use the following citation:

  • Lüdecke D, Ben-Shachar M, Patil I, Makowski D (2020). parameters: Extracting, Computing and Exploring the Parameters of Statistical Models using R. Journal of Open Source Software, 5(53), 2445. doi: 10.21105/joss.02445

Corresponding BibTeX entry:

@Article{,
  title = {parameters: Extracting, Computing and Exploring the Parameters of Statistical Models using {R}.},
  volume = {5},
  doi = {10.21105/joss.02445},
  number = {53},
  journal = {Journal of Open Source Software},
  author = {Daniel Lüdecke and Mattan S. Ben-Shachar and Indrajeet Patil and Dominique Makowski},
  year = {2020},
  pages = {2445},
}

Copy Link

Version

Install

install.packages('parameters')

Monthly Downloads

87,418

Version

0.10.1

License

GPL-3

Maintainer

Daniel Lüdecke

Last Published

December 8th, 2020

Functions in parameters (0.10.1)

center

Centering (Grand-Mean Centering)
check_kmo

Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA) for Factor Analysis
ci.merMod

Confidence Intervals (CI)
cluster_analysis

Compute cluster analysis and return group indices
bootstrap_model

Model bootstrapping
check_multimodal

Check if a distribution is unimodal or multimodal
check_clusterstructure

Check suitability of data for clustering
check_factorstructure

Check suitability of data for Factor Analysis (FA)
bootstrap_parameters

Parameters bootstrapping
check_sphericity

Bartlett's Test of Sphericity
cluster_discrimination

Compute a linear discriminant analysis on classified cluster groups
convert_efa_to_cfa

Conversion between EFA results and CFA structure
data_partition

Partition data into a test and a training set
.n_factors_cng

Cattell-Nelson-Gorsuch CNG Indices
.n_factors_bentler

Bentler and Yuan's Procedure
check_heterogeneity

Compute group-meaned and de-meaned variables
degrees_of_freedom

Degrees of Freedom (DoF)
format_parameters

Parameter names formatting
.n_factors_bartlett

Bartlett, Anderson and Lawley Procedures
convert_data_to_numeric

Convert data to numeric
describe_distribution

Describe a distribution
.filter_component

for models with zero-inflation component, return required component of model-summary
.factor_to_numeric

Safe transformation from factor/character to numeric
display.parameters_model

Print tables in different output formats
factor_analysis

Factor Analysis (FA)
get_scores

Get Scores from Principal Component Analysis (PCA)
.compact_character

remove empty string from character
model_parameters

Model Parameters
fish

Sample data set
model_parameters.logitor

Parameters from (General) Linear Models
.data_frame

help-functions
model_parameters.kmeans

Parameters from Cluster Models (k-means, ...)
model_parameters.lavaan

Parameters from CFA/SEM models
.n_factors_mreg

Multiple Regression Procedure
p_value.DirichletRegModel

p-values for Models with Special Components
model_parameters.zeroinfl

Parameters from Zero-Inflated Models
p_value

p-values
model_parameters.gam

Parameters from Generalized Additive (Mixed) Models
n_clusters

Number of clusters to extract
.compact_list

remove NULL elements from lists
model_parameters.aov

Parameters from ANOVAs
.find_most_common

Find most common occurence
ci_wald

Wald-test approximation for CIs and p-values
.factor_to_dummy

Safe transformation from factor/character to numeric
.flatten_list

Flatten a list
simulate_parameters

Simulate Model Parameters
simulate_model

Simulated draws from model coefficients
model_parameters.glht

Parameters from Hypothesis Testing
n_factors

Number of components/factors to retain in PCA/FA
format_order

Order (first, second, ...) formatting
n_parameters

Count number of parameters in a model
parameters_type

Type of model parameters
format_p_adjust

Format the name of the p-value adjustment methods
model_parameters.htest

Parameters from hypothesis tests
random_parameters

Summary information from random effects
reduce_parameters

Dimensionality reduction (DR) / Features Reduction
.n_factors_scree

Non Graphical Cattell's Scree Test
standard_error

Standard Errors
model_parameters.averaging

Parameters from special models
model_parameters.befa

Parameters from PCA/FA
ci_betwithin

Between-within approximation for SEs, CIs and p-values
model_parameters.rma

Parameters from Meta-Analysis
.n_factors_sescree

Standard Error Scree and Coefficient of Determination Procedures
ci_kenward

Kenward-Roger approximation for SEs, CIs and p-values
model_parameters.stanreg

Parameters from Bayesian Models
standard_error_robust

Robust estimation
pool_parameters

Pool Model Parameters
model_parameters.merMod

Parameters from Mixed Models
.recode_to_zero

Recode a variable so its lowest value is beginning with zero
p_value.zeroinfl

p-values for Models with Zero-Inflation
print.parameters_model

Print model parameters
qol_cancer

Sample data set
p_value.poissonmfx

p-values for Marginal Effects Models
model_parameters.mira

Parameters from multiply imputed repeated analyses
reshape_loadings

Reshape loadings between wide/long formats
equivalence_test.lm

Equivalence test
principal_components

Principal Component Analysis (PCA)
select_parameters

Automated selection of model parameters
reexports

Objects exported from other packages
rescale_weights

Rescale design weights for multilevel analysis
model_parameters.BFBayesFactor

Parameters from BayesFactor objects
model_parameters.mlm

Parameters from multinomial or cumulative link models
model_parameters.PCA

Parameters from Structural Models (PCA, EFA, ...)
model_parameters.Mclust

Parameters from Mixture Models
p_value.brmsfit

p-values for Bayesian Models
ci_ml1

"m-l-1" approximation for SEs, CIs and p-values
p_value.lmerMod

p-values for Mixed Models
ci_satterthwaite

Satterthwaite approximation for SEs, CIs and p-values
skewness

Compute Skewness and (Excess) Kurtosis
smoothness

Quantify the smoothness of a vector