Learn R Programming

⚠️There's a newer version (0.22.0) of this package.Take me there.

parameters

Describe and understand your model’s parameters!

parameters’ primary goal is to provide utilities for processing the parameters of various statistical models. Beyond computing p-values, CIs, Bayesian indices and other measures for a wide variety of models, this package implements features like bootstrapping of parameters and models, feature reduction (feature extraction and variable selection).

Installation

Run the following:

install.packages("devtools")
devtools::install_github("easystats/parameters")
library("parameters")

Documentation

Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:

Features

Model’s parameters description

The model_parameters() function (that can be accessed via the parameters() shortcut) allows you to extract the parameters and their characteristics from various models in a consistent way. It can be considered as a lightweight alternative to broom::tidy(), with some notable differences:

  • The column names of the returned data frame are specific to their content. For instance, the column containing the statistic is named following the statistic name, i.e., t, z, etc., instead of a generic name such as statistic (however, you can get standardized (generic) column names using standardize_names()).
  • It is able to compute or extract indices not available by default, such as p-values, CIs, etc.
  • It includes feature engineering capabilities, including parameters bootstrapping.

Classical Regression Models

model <- lm(Sepal.Width ~ Petal.Length * Species + Petal.Width, data = iris)

# regular model parameters
model_parameters(model)
# Parameter                           | Coefficient |   SE |         95% CI |     t |  df |      p
# ------------------------------------------------------------------------------------------------
# (Intercept)                         |        2.89 | 0.36 | [ 2.18,  3.60] |  8.01 | 143 | < .001
# Petal.Length                        |        0.26 | 0.25 | [-0.22,  0.75] |  1.07 | 143 | 0.287 
# Species [versicolor]                |       -1.66 | 0.53 | [-2.71, -0.62] | -3.14 | 143 | 0.002 
# Species [virginica]                 |       -1.92 | 0.59 | [-3.08, -0.76] | -3.28 | 143 | 0.001 
# Petal.Width                         |        0.62 | 0.14 | [ 0.34,  0.89] |  4.41 | 143 | < .001
# Petal.Length * Species [versicolor] |       -0.09 | 0.26 | [-0.61,  0.42] | -0.36 | 143 | 0.721 
# Petal.Length * Species [virginica]  |       -0.13 | 0.26 | [-0.64,  0.38] | -0.50 | 143 | 0.618

# standardized parameters
model_parameters(model, standardize = "refit")
# Parameter                           | Coefficient (std.) |   SE |         95% CI |     t |  df |      p
# -------------------------------------------------------------------------------------------------------
# (Intercept)                         |               3.59 | 1.30 | [ 1.01,  6.17] |  8.01 | 143 | 0.007 
# Petal.Length                        |               1.07 | 1.00 | [-0.91,  3.04] |  1.07 | 143 | 0.287 
# Species [versicolor]                |              -4.62 | 1.31 | [-7.21, -2.03] | -3.14 | 143 | < .001
# Species [virginica]                 |              -5.51 | 1.38 | [-8.23, -2.79] | -3.28 | 143 | < .001
# Petal.Width                         |               1.08 | 0.24 | [ 0.59,  1.56] |  4.41 | 143 | < .001
# Petal.Length * Species [versicolor] |              -0.38 | 1.06 | [-2.48,  1.72] | -0.36 | 143 | 0.721 
# Petal.Length * Species [virginica]  |              -0.52 | 1.04 | [-2.58,  1.54] | -0.50 | 143 | 0.618

Mixed Models

library(lme4)

model <- lmer(Sepal.Width ~ Petal.Length + (1|Species), data = iris)

# model parameters with p-values based on Kenward-Roger approximation
model_parameters(model, p_method = "kenward", ci_method = "kenward")
# Parameter    | Coefficient |   SE |       95% CI |    t |     df |      p
# -------------------------------------------------------------------------
# (Intercept)  |        2.00 | 0.57 | [0.08, 3.92] | 3.56 |   2.67 | 0.046 
# Petal.Length |        0.28 | 0.06 | [0.16, 0.40] | 4.75 | 140.99 | < .001

Besides many types of regression models and packages, it also works for other types of models, such as structural models (EFA, CFA, SEM…).

library(psych)

model <- psych::fa(attitude, nfactors = 3)
model_parameters(model)
# # Rotated loadings from Principal Component Analysis (oblimin-rotation)
# 
# Variable   |   MR1 |   MR2 |   MR3 | Complexity | Uniqueness
# ------------------------------------------------------------
# rating     |  0.90 | -0.07 | -0.05 |       1.02 |       0.23
# complaints |  0.97 | -0.06 |  0.04 |       1.01 |       0.10
# privileges |  0.44 |  0.25 | -0.05 |       1.64 |       0.65
# learning   |  0.47 |  0.54 | -0.28 |       2.51 |       0.24
# raises     |  0.55 |  0.43 |  0.25 |       2.35 |       0.23
# critical   |  0.16 |  0.17 |  0.48 |       1.46 |       0.67
# advance    | -0.11 |  0.91 |  0.07 |       1.04 |       0.22
# 
# The 3 latent factors (oblimin rotation) accounted for 66.60% of the total variance of the original data (MR1 = 38.19%, MR2 = 22.69%, MR3 = 5.72%).

Variable and parameters selection

library(dplyr)

lm(disp ~ ., data = mtcars) %>% 
  parameters_selection() %>% 
  model_parameters()
# Parameter   | Coefficient |     SE |            95% CI |     t | df |      p
# ----------------------------------------------------------------------------
# (Intercept) |      141.70 | 125.67 | [-116.62, 400.02] |  1.13 | 26 | 0.270 
# cyl         |       13.14 |   7.90 | [  -3.10,  29.38] |  1.66 | 26 | 0.108 
# hp          |        0.63 |   0.20 | [   0.22,   1.03] |  3.18 | 26 | 0.004 
# wt          |       80.45 |  12.22 | [  55.33, 105.57] |  6.58 | 26 | < .001
# qsec        |      -14.68 |   6.14 | [ -27.31,  -2.05] | -2.39 | 26 | 0.024 
# carb        |      -28.75 |   5.60 | [ -40.28, -17.23] | -5.13 | 26 | < .001

The parameters_selection() can also help you quickly select and retain the most relevant predictors using methods tailored for the model type. This function also works for mixed or Bayesian models:

library(rstanarm)

stan_glm(mpg ~ ., data = mtcars, refresh = 0) %>% 
  parameters_selection() %>% 
  model_parameters()
# Parameter   | Median |         89% CI |     pd | % in ROPE |  Rhat |  ESS |               Prior
# -----------------------------------------------------------------------------------------------
# (Intercept) |  19.90 | [-0.59, 44.44] | 92.62% |     1.23% | 1.000 | 2348 | Normal (0 +- 60.27)
# wt          |  -3.98 | [-5.92, -1.88] | 99.75% |     0.32% | 1.001 | 2159 | Normal (0 +- 15.40)
# cyl         |  -0.48 | [-1.91,  0.76] | 71.43% |    46.02% | 1.000 | 2651 |  Normal (0 +- 8.44)
# hp          |  -0.02 | [-0.04,  0.01] | 89.22% |      100% | 1.000 | 2766 |  Normal (0 +- 0.22)
# am          |   2.93 | [-0.01,  5.77] | 94.90% |     7.42% | 1.000 | 2813 | Normal (0 +- 15.07)
# qsec        |   0.80 | [-0.18,  1.73] | 91.33% |    35.23% | 1.000 | 2273 |  Normal (0 +- 8.43)
# disp        |   0.01 | [-0.01,  0.03] | 87.08% |      100% | 1.002 | 2601 |  Normal (0 +- 0.12)

Miscellaneous

This packages also contains a lot of other useful functions:

Describe a Distribution

x <- rnorm(300)
describe_distribution(x)
knitr::kable(describe_distribution(rnorm(300)), digits = 1)
MeanSDMinMaxSkewnessKurtosisnn_Missing
-0.11-330-0.33000

Copy Link

Version

Install

install.packages('parameters')

Monthly Downloads

87,418

Version

0.3.0

License

GPL-3

Maintainer

Daniel Lüdecke

Last Published

November 20th, 2019

Functions in parameters (0.3.0)

describe_distribution

Describe a Distribution
convert_data_to_numeric

Convert data to numeric
ICA

Independent Component Analysis (ICA)
DRR

Dimensionality Reduction via Regression (DRR)
cmds

Classical Multidimensional Scaling (cMDS)
.compact_character

remove empty string from character
convert_efa_to_cfa

Conversion between EFA results and CFA structure
.filter_component

for models with zero-inflation component, return required component of model-summary
.n_factors_bentler

Bentler and Yuan's Procedure
.n_factors_cng

Cattell-Nelson-Gorsuch CNG Indices
data_partition

Partition data into a test and a training set
.n_factors_sescree

Standard Error Scree and Coefficient of Determination Procedures
.factor_to_dummy

Safe transformation from factor/character to numeric
check_clusterstructure

Check suitability of data for Clustering
check_factorstructure

Check suitability of data for Factor Analysis (FA)
.compact_list

remove NULL elements from lists
model_parameters.aov

ANOVAs Parameters
.recode_to_zero

Recode a variable so its lowest value is beginning with zero
model_parameters.befa

Format PCA/FA from the psych package
.find_most_common

Find most common occurence
format_model

Model Name Formatting
model_parameters.BFBayesFactor

BayesFactor objects Parameters
model_bootstrap

Model bootstrapping
format_ci

Confidence/Credible Interval (CI) Formatting
.factor_to_numeric

Safe transformation from factor/character to numeric
format_algorithm

Model Algorithm Formatting
model_parameters.Mclust

Mixture Models Parameters
model_parameters

Model Parameters
format_bf

Bayes Factor Formatting
model_parameters.PCA

Structural Models (PCA, EFA, ...)
.data_frame

help-functions
n_parameters

Count number parameters in a model
model_parameters.htest

Correlations and t-test Parameters
model_parameters.kmeans

Cluster Models (k-means, ...)
p_value

p-values
standardize_names

Standardize column names
standard_error_robust

Extract standard errors
degrees_of_freedom

Degrees of Freedom (DoF)
demean

Compute group-meaned and de-meaned variables
model_parameters.lavaan

Format CFA/SEM from the lavaan package
dof_kenward

p-values using Kenward-Roger approximation
model_parameters.merMod

Mixed Model Parameters
.n_factors_mreg

Multiple Regression Procedure
reexports

Objects exported from other packages
.n_factors_scree

Non Graphical Cattell's Scree Test
ci_wald

Wald-test approximation for CIs and p-values
model_parameters.stanreg

Bayesian Models Parameters
equivalence_test.lm

Equivalence test
factor_analysis

Factor Analysis (FA)
format_pd

Probability of direction (pd) Formatting
reshape_loadings

Reshape loadings between wide/long formats
parameters_bootstrap

Parameters bootstrapping
parameters_reduction

Dimensionality reduction (DR) / Features Reduction
format_rope

Percentage in ROPE Formatting
print

Print model parameters
parameters_simulate

Parameters simulation
model_simulate

Simulated draws from model coefficients
model_parameters.zeroinfl

Model Parameters for Zero-Inflated Models
principal_components

Principal Component Analysis (PCA)
parameters_selection

Parameters Selection
parameters_table

Parameters Table Formatting
parameters_type

Type of Model Parameters
.n_factors_bartlett

Bartlett, Anderson and Lawley Procedures
.flatten_list

Flatten a list
format_number

Convert number to words
format_p

p-values formatting
format_parameters

Parameters Names Formatting
format_order

Order (first, second, ...) formatting
n_clusters

Number of Clusters to Extract
model_parameters.default

Parameters of (General) Linear Models
model_parameters.gam

Parameters of Generalized Additive (Mixed) Models
n_factors

Number of Components/Factors to Retain in Factor Analysis
skewness

Compute Skewness and Kurtosis
smoothness

Quantify the smoothness of a vector
check_sphericity

Bartlett's Test of Sphericity
ci.merMod

Confidence Interval (CI)
check_kmo

Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA) for Factor Analysis
check_multimodal

Check if a distribution is unimodal or multimodal
cluster_discrimination

Compute a linear discriminant analysis on classified cluster groups
cluster_analysis

Compute cluster analysis and return group indices