# NOT RUN {
Correl <- 0.85
N <- 10000
data <- data.table::data.table(Target = runif(N))
data[, x1 := qnorm(Target)]
data[, x2 := runif(N)]
data[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                            sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable2 := (pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                            sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                                sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))^0.25]
data[, Independent_Variable8 := (pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))^0.75]
data[, Independent_Variable9 := (pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Independent_Variable11 := as.factor(
  ifelse(Independent_Variable2 < 0.20, "A",
         ifelse(Independent_Variable2 < 0.40, "B",
                ifelse(Independent_Variable2 < 0.6,  "C",
                       ifelse(Independent_Variable2 < 0.8,  "D", "E")))))]
data[, ':=' (x1 = NULL, x2 = NULL)]
data[, Target := ifelse(Target > 0.5, 1, 0)]
TestModel <- AutoXGBoostClassifier(data,
                                   TrainOnFull = FALSE,
                                   ValidationData = NULL,
                                   TestData = NULL,
                                   TargetColumnName = 1,
                                   FeatureColNames = 2:12,
                                   IDcols = NULL,
                                   eval_metric = "auc",
                                   Trees = 50,
                                   GridTune = TRUE,
                                   grid_eval_metric = "auc",
                                   MaxModelsInGrid = 10,
                                   NThreads = 8,
                                   TreeMethod = "hist",
                                   model_path = NULL,
                                   metadata_path = NULL,
                                   ModelID = "FirstModel",
                                   NumOfParDepPlots = 3,
                                   ReturnModelObjects = TRUE,
                                   ReturnFactorLevels = TRUE,
                                   SaveModelObjects = FALSE,
                                   PassInGrid = NULL)
# }
Run the code above in your browser using DataLab