Learn R Programming

ROptRegTS (version 1.2.0)

Av1CondContIC: Generating function for Av1CondContIC-class

Description

Generates an object of class "Av1CondContIC"; i.e., an influence curves \(\eta\) of the form $$\eta = (A\Lambda - a)\min(1,b/|A\Lambda - a|)$$ with clipping bound \(b\), centering function \(a\) and standardizing matrix \(A\). \(\Lambda\) stands for the L2 derivative of the corresponding L2 differentiable parametric family which can be created via CallL2Fam.

Usage

Av1CondContIC(name, CallL2Fam = call("L2RegTypeFamily"),
       Curve = EuclRandVarList(RealRandVariable(
               Map = list(function(x){x[1]*x[2]}),
               Domain = EuclideanSpace(dimension = 2))),
       Risks, Infos, clip = Inf, stand = as.matrix(1), 
       cent = EuclRandVarList(RealRandVariable(
               Map = list(function(x){numeric(length(x))}),
               Domain = EuclideanSpace(dimension = 2))),
       lowerCase = NULL, neighborRadius = 0)

Arguments

name

object of class "character".

CallL2Fam

object of class "call": creates an object of the underlying L2-differentiable regression type family.

Curve

object of class "EuclRandVarList"

Risks

object of class "list": list of risks; cf. RiskType-class.

Infos

matrix of characters with two columns named method and message: additional informations.

clip

positive real: clipping bound.

cent

object of class "EuclRandVarList": centering function.

stand

matrix: standardizing matrix.

lowerCase

optional constant for lower case solution.

neighborRadius

radius of the corresponding (unconditional) contamination neighborhood.

Value

Object of class "Av1CondContIC"

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.

See Also

CondIC-class, Av1CondContIC-class

Examples

Run this code
# NOT RUN {
IC1 <- Av1CondContIC()
IC1
# }

Run the code above in your browser using DataLab