pneumo <- transform(pneumo, let = log(exposure.time))
(fit1 <- vglm(cbind(normal, mild, severe) ~ let,
cumulative(parallel = TRUE, reverse = TRUE), data = pneumo))
coef(fit1, matrix = TRUE)
BIC(fit1)
(fit2 <- vglm(cbind(normal, mild, severe) ~ let,
cumulative(parallel = FALSE, reverse = TRUE), data = pneumo))
coef(fit2, matrix = TRUE)
BIC(fit2)
# These do not agree in absolute terms:
gdata <- data.frame(x2 = sort(runif(n <- 40)))
gdata <- transform(gdata, y1 = 1 + 2*x2 + rnorm(n, sd = 0.1))
fit.v <- vglm(y1 ~ x2, gaussianff, data = gdata)
fit.g <- glm(y1 ~ x2, gaussian , data = gdata)
fit.l <- lm(y1 ~ x2, data = gdata)
c(BIC(fit.l), BIC(fit.g), BIC(fit.v))
c(AIC(fit.l), AIC(fit.g), AIC(fit.v))
c(AIC(fit.l) - AIC(fit.v),
AIC(fit.g) - AIC(fit.v))
c(logLik(fit.l), logLik(fit.g), logLik(fit.v))
Run the code above in your browser using DataLab