## Not run:
#
# #Analysis of Crime Data
# #load data
# data(UScrime)
#
# crime.Bvs<- Bvs(formula="y~.", data=UScrime, n.keep=1000)
# crime.Bvs.BMA<- BMAcoeff(crime.Bvs, n.sim=10000)
# #the best 1000 models are used in the mixture
#
# #We could force all possible models to be included in the mixture
# crime.Bvs.all<- Bvs(formula="y~.", data=UScrime, n.keep=2^15)
# crime.Bvs.BMA<- BMAcoeff(crime.Bvs.all, n.sim=10000)
# #(much slower as this implies ordering many more models...)
#
# #With the Gibbs algorithms:
# data(Ozone35)
#
# Oz35.GibbsBvs<- GibbsBvs(formula="y~.", data=Ozone35, prior.betas="gZellner",
# prior.models="Constant", n.iter=10000, init.model="Full", n.burnin=100,
# time.test = FALSE)
# Oz35.GibbsBvs.BMA<- BMAcoeff(Oz35.GibbsBvs, n.sim=10000)
#
#
# ## End(Not run)
Run the code above in your browser using DataLab