Learn R Programming

distr6 (version 1.3.6)

Beta: Beta Distribution Class

Description

Mathematical and statistical functions for the Beta distribution, which is commonly used as the prior in Bayesian modelling.

Value

Returns an R6 object inheriting from class SDistribution.

Constructor

Beta$new(shape1 = 1, shape2 = 1, decorators = NULL, verbose = FALSE)

Constructor Arguments

Argument Type Details
shape1, shape2 numeric positive shape parameter.

decorators Decorator decorators to add functionality. See details.

Constructor Details

The Beta distribution is parameterised with shape1 and shape2 as positive numerics.

Public Variables

Variable Return
name Name of distribution.
short_name Id of distribution.
description Brief description of distribution.

Public Methods

Accessor Methods Link
decorators decorators
traits traits
valueSupport valueSupport
variateForm variateForm
type type
properties properties
support support
symmetry symmetry
sup sup
inf inf
dmax dmax
dmin dmin
skewnessType skewnessType
kurtosisType kurtosisType

Statistical Methods Link pdf(x1, ..., log = FALSE, simplify = TRUE) pdf cdf(x1, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) cdf quantile(p, ..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE) quantile.Distribution rand(n, simplify = TRUE) rand mean() mean.Distribution variance() variance stdev() stdev prec() prec cor() cor skewness() skewness kurtosis(excess = TRUE) kurtosis entropy(base = 2) entropy mgf(t) mgf cf(t) cf pgf(z) pgf median() median.Distribution iqr() iqr mode(which = "all") mode

Parameter Methods Link parameters(id) parameters getParameterValue(id, error = "warn") getParameterValue setParameterValue(..., lst = NULL, error = "warn") setParameterValue

Validation Methods Link liesInSupport(x, all = TRUE, bound = FALSE) liesInSupport liesInType(x, all = TRUE, bound = FALSE) liesInType

Representation Methods Link strprint(n = 2) strprint print(n = 2) print summary(full = T) summary.Distribution

Details

The Beta distribution parameterised with two shape parameters, \(\alpha, \beta\), is defined by the pdf, $$f(x) = (x^{\alpha-1}(1-x)^{\beta-1}) / B(\alpha, \beta)$$ for \(\alpha, \beta > 0\), where \(B\) is the Beta function.

The distribution is supported on \([0, 1]\).

mgf and cf are omitted as no closed form analytic expression could be found, decorate with CoreStatistics for numerical results.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

listDistributions for all available distributions. CoreStatistics for numerical results.

Examples

Run this code
# NOT RUN {
x = Beta$new(shape1 = 2, shape2 = 5)

# Update parameters
x$setParameterValue(shape1 = 1)
x$parameters()

# d/p/q/r
x$pdf(5)
x$cdf(5)
x$quantile(0.42)
x$rand(4)

# Statistics
x$mean()
x$variance()

summary(x)

# }

Run the code above in your browser using DataLab