BiCopPar2Tau(family, par, par2=0)
0
= independence copula
1
= Gaussian copula
2
= Student t copula (t-copula)
3
= Clayton copula
4
= Gumbel copula
5
= Frank copula
6
= Joe copula
7
= BB1 copula
8
= BB6 copula
9
= BB7 copula
10
= BB8 copula
13
= rotated Clayton copula (180 degrees; ``survival Clayton'')
14
= rotated Gumbel copula (180 degrees; ``survival Gumbel'')
16
= rotated Joe copula (180 degrees; ``survival Joe'')
17
= rotated BB1 copula (180 degrees; ``survival BB1'')
18
= rotated BB6 copula (180 degrees; ``survival BB6'')
19
= rotated BB7 copula (180 degrees; ``survival BB7'')
20
= rotated BB8 copula (180 degrees; ``survival BB8'')
23
= rotated Clayton copula (90 degrees)
24
= rotated Gumbel copula (90 degrees)
26
= rotated Joe copula (90 degrees)
27
= rotated BB1 copula (90 degrees)
28
= rotated BB6 copula (90 degrees)
29
= rotated BB7 copula (90 degrees)
30
= rotated BB8 copula (90 degrees)
33
= rotated Clayton copula (270 degrees)
34
= rotated Gumbel copula (270 degrees)
36
= rotated Joe copula (270 degrees)
37
= rotated BB1 copula (270 degrees)
38
= rotated BB6 copula (270 degrees)
39
= rotated BB7 copula (270 degrees)
40
= rotated BB8 copula (270 degrees)
par2 = 0
).
Note that the degrees of freedom parameter of the t-copula does not need to be set,
because the theoretical Kendall's tau value of the t-copula is independent of this choice.No. |
Kendall's tau |
1, 2 |
$2 / \pi arcsin(\theta)$ |
3, 13 |
$\theta / (\theta+2)$ |
4, 14 |
$1-1/\theta$ |
5 |
$1-4/\theta + 4 D_1(\theta)/\theta$ |
with $D_1(\theta)=\int_0^\theta (x/\theta)/(exp(x)-1)dx$ (Debye function) |
6, 16 |
$1+4/\theta^2\int_0^1 x\log(x)(1-x)^{2(1-\theta)/\theta}dx$ |
7, 17 |
$1-2/(\delta(\theta+2))$ |
8, 18 |
$1+4\int_0^1 -\log(-(1-t)^\theta+1)(1-t-(1-t)^{-\theta}+(1-t)^{-\theta}t)/(\delta\theta) dt$ |
9, 19 |
$1+4\int_0^1 ( (1-(1-t)^{\theta})^{-\delta} - )/( -\theta\delta(1-t)^{\theta-1}(1-(1-t)^{\theta})^{-\delta-1} ) dt$ |
10, 20 |
$1+4\int_0^1 -\log \left( ((1-t\delta)^\theta-1)/((1-\delta)^\theta-1) \right) $ |
$* (1-t\delta-(1-t\delta)^{-\theta}+(1-t\delta)^{-\theta}t\delta)/(\theta\delta) dt$ |
23, 33 |
$\theta/(2-\theta)$ |
24, 34 |
$-1-1/\theta$ |
26, 36 |
$-1-4/\theta^2\int_0^1 x\log(x)(1-x)^{-2(1+\theta)/\theta}dx$ |
27, 37 |
$1-2/(\delta(\theta+2))$ |
28, 38 |
$-1-4\int_0^1 -\log(-(1-t)^{-\theta}+1)(1-t-(1-t)^{\theta}+(1-t)^{\theta}t)/(\delta\theta) dt$ |
29, 39 |
$-1-4\int_0^1 ( (1-(1-t)^{-\theta})^{\delta} - )/( -\theta\delta(1-t)^{-\theta-1}(1-(1-t)^{-\theta})^{\delta-1} ) dt$ |
30, 40 |
$-1-4\int_0^1 -\log \left( ((1+t\delta)^{-\theta}-1)/((1+\delta)^{-\theta}-1) \right)$ |
$* (1+t\delta-(1+t\delta)^{\theta}-(1+t\delta)^{\theta}t\delta)/(\theta\delta) dt$ |
Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation of mixed C-vines with application to exchange rates. Statistical Modelling, 12(3), 229-255.
CDVinePar2Tau
, BiCopTau2Par
## Example 1: Gaussian copula
tt1 = BiCopPar2Tau(1,0.7)
# transform back
BiCopTau2Par(1,tt1)
## Example 2: Clayton copula
BiCopPar2Tau(3,1.3)
Run the code above in your browser using DataLab