# NOT RUN {
data(airfoil)
n <- nrow(airfoil)
n0 <- floor( 0.2 * n )
set.seed(123)
idx_test <- sample(n, n0)
idx_train <- sample((1:n)[-idx_test], floor( 0.6 * n ) )
idx_val <- (1:n)[ -c(idx_test, idx_train) ]
xx <- airfoil[, -6]
yy <- airfoil$y
xtrain <- xx[ idx_train, ]
ytrain <- yy[ idx_train ]
xval <- xx[ idx_val, ]
yval <- yy[ idx_val ]
xtest <- xx[ idx_test, ]
ytest <- yy[ idx_test ]
model_RRBoost_cv_LADTree = Boost.validation(x_train = xtrain,
y_train = ytrain, x_val = xval, y_val = yval,
x_test = xtest, y_test = ytest, type = "RRBoost", error = "rmse",
y_init = "LADTree", max_depth = 1, niter = 1000,
max_depth_init_set = 1:5,
min_leaf_size_init_set = c(10,20,30),
control = Boost.control(make_prediction = TRUE,
cal_imp = TRUE))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab