powered by
This function builds a classification model using CART.
CART( train, labels, minsplit = 1, maxdepth = log2(length(labels)), cp = NULL, tune = FALSE, ... )
The training set (description), as a data.frame.
data.frame
Class labels of the training set (vector or factor).
vector
factor
The minimum leaf size during the learning.
Set the maximum depth of any node of the final tree, with the root node counted as depth 0.
The complexity parameter of the tree. Cross-validation is used to determine optimal cp if NULL.
If true, the function returns paramters instead of a classification model.
Other parameters.
The classification model.
cartdepth, cartinfo, cartleafs, cartnodes, cartplot, rpart
cartdepth
cartinfo
cartleafs
cartnodes
cartplot
rpart
# NOT RUN { require (datasets) data (iris) CART (iris [, -5], iris [, 5]) # }
Run the code above in your browser using DataLab