# NOT RUN {
ex.CIG <- CIG("9-4.2", vertex.color="white", vertex.label.color="darkred")
## play around with the dynamic graph until it looks right
## look up its id number in the title bar of the graph window and use it for id
par(xpd=TRUE)
CIGstatic(ex.CIG, id=1)
# }
# NOT RUN {
graph1 <- CIG("9-4.2", plot=FALSE) ### create graph object from design name
### calculate graph properties
require(igraph)
degree(graph1)
clique.number(graph1)
independence.number(graph1)
largest.cliques(graph1)
graph2 <- gen2CIG(32, c(7,11,14,29)) ### create graph object from generator columns
### check isomorphism to graph1
graph.isomorphic(graph1, graph2)
# }
# NOT RUN {
## use a CIG for manual design search
## requirement set:
estim <- compromise(9, 8:9)$requirement ## all interactions of factors 8 and 9 (H, J)
## graph the requirement set CIG
CIG(estim, vertex.color="white", vertex.label.color="darkred")
## a human can easily see that columns 1, 8 and 9 are worth a try for factors P, Q and R
CIG("9-4.1", vertex.color="white", vertex.label.color="darkred")
## obviously, 9-4.1 cannot accommodate the requirement set
CIG("9-4.2", vertex.color="white", vertex.label.color="darkred")
## 9-4.2 can, by assigning factors H and J to columns 5 and 9
## function FrF2 automatically does such matchings
# }
Run the code above in your browser using DataLab