# load the package
library(CORElearn)
cat(versionCore(),"\n")
# use iris data set
trainIdxs <- sample(x=nrow(iris), size=0.7*nrow(iris), replace=FALSE)
testIdxs <- c(1:nrow(iris))[-trainIdxs]
# build random forests model with certain parameters
# setting maxThreads to 0 or more than 1 forces
# utilization of several processor cores
modelRF <- CoreModel(Species ~ ., iris[trainIdxs,], model="rf",
selectionEstimator="MDL",minNodeWeightRF=5,
rfNoTrees=100, maxThreads=1)
print(modelRF) # simple visualization, test also others with function plot
# prediction on testing set
pred <- predict(modelRF, iris[testIdxs,], type="both")
# compute statistics
mEval <- modelEval(modelRF, iris[["Species"]][testIdxs], pred$class, pred$prob)
print(mEval)
if (FALSE) {
# explain predictions on the level of model and individual instances
require(ExplainPrediction)
explainVis(modelRF, iris[trainIdxs,], iris[testIdxs,], method="EXPLAIN",
visLevel="model", problemName="iris", fileType="none",
classValue=1, displayColor="color")
# turn on the history in visualization window to see all instances
explainVis(modelRF, iris[trainIdxs,], iris[testIdxs,], method="EXPLAIN",
visLevel="instance", problemName="iris", fileType="none",
classValue=1, displayColor="color")
}
# Clean up, otherwise the memory is still taken
destroyModels(modelRF) # clean up
# evaluate features in given data set with selected method
# instead of formula interface one can provide just
# the name or index of target variable
estReliefF <- attrEval("Species", iris,
estimator="ReliefFexpRank", ReliefIterations=30)
print(estReliefF)
# evaluate ordered features with ordEval
profiles <- ordDataGen(200)
est <- ordEval(class ~ ., profiles, ordEvalNoRandomNormalizers=100)
# print(est)
Run the code above in your browser using DataLab