Learn R Programming

AER (version 1.2-5)

CigarettesB: Cigarette Consumption Data

Description

Cross-section data on cigarette consumption for 46 US States, for the year 1992.

Usage

data("CigarettesB")

Arguments

Format

A data frame containing 46 observations on 3 variables.

packs

Logarithm of cigarette consumption (in packs) per person of smoking age (> 16 years).

price

Logarithm of real price of cigarette in each state.

income

Logarithm of real disposable income (per capita) in each state.

References

Baltagi, B.H. (2002). Econometrics, 3rd ed. Berlin, Springer.

Baltagi, B.H. and Levin, D. (1992). Cigarette Taxation: Raising Revenues and Reducing Consumption. Structural Change and Economic Dynamics, 3, 321--335.

See Also

Baltagi2002, CigarettesSW

Examples

Run this code
# NOT RUN {
data("CigarettesB")

## Baltagi (2002)
## Table 3.3
cig_lm <- lm(packs ~ price, data = CigarettesB)
summary(cig_lm)

## Chapter 5: diagnostic tests (p. 111-115)
cig_lm2 <- lm(packs ~ price + income, data = CigarettesB)
summary(cig_lm2)
## Glejser tests (p. 112)
ares <- abs(residuals(cig_lm2))
summary(lm(ares ~ income, data = CigarettesB))
summary(lm(ares ~ I(1/income), data = CigarettesB))
summary(lm(ares ~ I(1/sqrt(income)), data = CigarettesB))
summary(lm(ares ~ sqrt(income), data = CigarettesB))
## Goldfeld-Quandt test (p. 112)
gqtest(cig_lm2, order.by = ~ income, data = CigarettesB, fraction = 12, alternative = "less")
## NOTE: Baltagi computes the test statistic as mss1/mss2,
## i.e., tries to find decreasing variances. gqtest() always uses
## mss2/mss1 and has an "alternative" argument.

## Spearman rank correlation test (p. 113)
cor.test(~ ares + income, data = CigarettesB, method = "spearman")
## Breusch-Pagan test (p. 113)
bptest(cig_lm2, varformula = ~ income, data = CigarettesB, student = FALSE)
## White test (Table 5.1, p. 113)
bptest(cig_lm2, ~ income * price + I(income^2) + I(price^2), data = CigarettesB)
## White HC standard errors (Table 5.2, p. 114)
coeftest(cig_lm2, vcov = vcovHC(cig_lm2, type = "HC1"))
## Jarque-Bera test (Figure 5.2, p. 115)
hist(residuals(cig_lm2), breaks = 16, ylim = c(0, 10), col = "lightgray")
library("tseries")
jarque.bera.test(residuals(cig_lm2))

## Tables 8.1 and 8.2
influence.measures(cig_lm2)

## More examples can be found in:
## help("Baltagi2002")
# }

Run the code above in your browser using DataLab