if(require(curatedOvarianData) && require(sparsediscrim))
{
data(TCGA_eset)
badOutcome <- which(pData(TCGA_eset)[, "vital_status"] == "deceased" & pData(TCGA_eset)[, "days_to_death"] <= 365)
goodOutcome <- which(pData(TCGA_eset)[, "vital_status"] == "living" & pData(TCGA_eset)[, "days_to_death"] >= 365 * 5)
TCGA_eset <- TCGA_eset[, c(badOutcome, goodOutcome)]
classes <- factor(rep(c("Poor", "Good"), c(length(badOutcome), length(goodOutcome))))
pData(TCGA_eset)[, "class"] <- classes
results <- runTests(TCGA_eset, "Ovarian Cancer", "Differential Expression", resamples = 2, folds = 2)
show(results)
predictions(results)
actualClasses(results)
}
Run the code above in your browser using DataLab