# Example 1
cumulative()
cumulative(link = "probit", reverse = TRUE, parallel = TRUE)
# Example 2
wdata <- data.frame(x = runif(nn <- 1000))
wdata <- transform(wdata,
y = rweibull(nn, shape = 2 + exp(1+x), scale = exp(-0.5)))
fit = vglm(y ~ x, weibull(lshape = "logoff", eshape = list(offset = -2),
zero = 2), wdata)
coef(fit, mat = TRUE)
# Example 3; multivariate (multiple) response
ndata <- data.frame(x = runif(nn <- 500))
ndata <- transform(ndata,
y1 = rnbinom(nn, mu = exp(3+x), size = exp(1)), # k is size
y2 = rnbinom(nn, mu = exp(2-x), size = exp(0)))
fit <- vglm(cbind(y1, y2) ~ x, negbinomial(zero = -2), ndata)
coef(fit, matrix = TRUE)
# Example 4
# fit1 and fit2 are equivalent
fit1 <- vglm(ymatrix ~ x2 + x3 + x4 + x5,
cumulative(parallel = FALSE ~ 1 + x3 + x5), mydataframe)
fit2 <- vglm(ymatrix ~ x2 + x3 + x4 + x5,
cumulative(parallel = TRUE ~ x2 + x4), mydataframe)
# Example 5
gdata <- data.frame(x = rnorm(nn <- 200))
gdata <- transform(gdata,
y1 = rnorm(nn, mean = 1 - 3*x, sd = exp(1 + 0.2*x)),
y2 = rnorm(nn, mean = 1 - 3*x, sd = exp(1)))
args(normal1)
fit1 <- vglm(y1 ~ x, normal1, gdata) # This is ok
fit2 <- vglm(y2 ~ x, normal1(zero = 2), gdata) # This is ok
# This creates potential conflict
clist <- list("(Intercept)" = diag(2), "x" = diag(2))
fit3 <- vglm(y2 ~ x, normal1(zero = 2), gdata,
constraints = clist) # Conflict!
coef(fit3, matrix = TRUE) # Shows that clist[["x"]] was overwritten,
constraints(fit3) # i.e., 'zero' seems to override the 'constraints' arg
Run the code above in your browser using DataLab