## Not run:
# # 1) load onto.GOMF (as 'Onto' object)
# g <- dcRDataLoader('onto.GOMF')
#
# # 2) load SCOP superfamilies annotated by GOMF (as 'Anno' object)
# Anno <- dcRDataLoader('SCOP.sf2GOMF')
#
# # 3) prepare for ontology appended with annotation information
# dag <- dcDAGannotate(g, annotations=Anno, path.mode="shortest_paths",
# verbose=TRUE)
#
# # 4) calculate pair-wise semantic similarity between 10 randomly chosen domains
# alldomains <- unique(unlist(nInfo(dag)$annotations))
# domains <- sample(alldomains,10)
# dnetwork <- dcDAGdomainSim(g=dag, domains=domains,
# method.domain="BM.average", method.term="Resnik", parallel=FALSE,
# verbose=TRUE)
# dnetwork
#
# # 5) estimate RWR dating based sample/term relationships
# # define sets of seeds as data
# # each seed with equal weight (i.e. all non-zero entries are '1')
# data <- data.frame(aSeeds=c(1,0,1,0,1), bSeeds=c(0,0,1,0,1))
# rownames(data) <- id(dnetwork)[1:5]
# # calcualte their two contact graph
# coutput <- dcRWRpipeline(data=data, g=dnetwork, parallel=FALSE)
# coutput
#
# # 6) write into the file 'Coutput.txt' in your local directory
# write(coutput, file='Coutput.txt', saveBy="adjp")
#
# # 7) retrieve several slots directly
# ratio(coutput)
# zscore(coutput)
# pvalue(coutput)
# adjp(coutput)
# cnetwork(coutput)
# ## End(Not run)
Run the code above in your browser using DataLab