DEGseq(mapResultBatch1, mapResultBatch2, fileFormat="bed", readLength=32,
strandInfo=FALSE, refFlat, groupLabel1="group1", groupLabel2="group2",
method=c("LRT", "CTR", "FET", "MARS", "MATR", "FC"),
pValue=1e-3, zScore=4, qValue=1e-3, foldChange=4, thresholdKind=1,
outputDir="none", normalMethod=c("none", "loess", "median"),
depthKind=1, replicate1="none", replicate2="none",
replicateLabel1="replicate1", replicateLabel2="replicate2")
method="CTR"
).method="CTR"
)."bed"
or "eland"
.
example of "bed"
format: chr12 7 38 readID 2 +
example of "eland"
format: readID chr12.fa 7 U2 F
Note: The field separator character is TAB
. And the files must
follow the format as one of the examples.fileFormat="eland"
)."TRUE"
: retained,"FALSE"
: not retained."LRT"
: Likelihood Ratio Test (Marioni et al. 2008),"CTR"
: Check whether the variation between two Technical Replicates
can be explained by the random sampling model (Wang et al. 2009),"FET"
: Fisher's Exact Test (Joshua et al. 2009),"MARS"
: MA-plot-based method with Random Sampling model (Wang et al. 2009),"MATR"
: MA-plot-based method with Technical Replicates (Wang et al. 2009),"FC"
: Fold-Change threshold on MA-plot.LRT, FET, MARS, MATR
).
only used when thresholdKind=1
.MARS, MATR
).
only used when thresholdKind=2
.LRT, FET, MARS, MATR
).
only used when thresholdKind=3
or thresholdKind=4
.1
: pValue threshold,2
: zScore threshold,3
: qValue threshold (Benjamini et al. 1995),4
: qValue threshold (Storey et al. 2003),5
: qValue threshold (Storey et al. 2003) and Fold-Change threshold on MA-plot are both required (can be used only whenmethod="MARS"
).FC
)."none", "loess", "median"
(Yang,Y.H. et al. 2002).
recommend: "none"
.1
: take the total number of reads uniquely mapped to genome as the depth for each replicate,
0
: take the total number of reads uniquely mapped to all annotated genes as the depth for each replicate.
We recommend taking depthKind=1
,
especially when the genes in annotation file are part of all genes.method="MATR"
).method="MATR"
).method="MATR"
).method="MATR"
).Jiang,H. and Wong,W.H. (2009) Statistical inferences for isoform expression in RNA-seq. Bioinformatics, 25, 1026-1032.
Bloom,J.S. et al. (2009) Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays. BMC Genomics, 10, 221.
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517.
Storey,J.D. and Tibshirani,R. (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. 100, 9440-9445. Wang,L.K. and et al. (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics 26, 136 - 138. Yang,Y.H. et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30, e15.
DEGexp
,
getGeneExp
,
readGeneExp
,
kidneyChr21.bed
,
liverChr21.bed
,
refFlatChr21
.kidneyR1L1 <- system.file("extdata", "kidneyChr21.bed.txt", package="DEGseq")
liverR1L2 <- system.file("extdata", "liverChr21.bed.txt", package="DEGseq")
refFlat <- system.file("extdata", "refFlatChr21.txt", package="DEGseq")
mapResultBatch1 <- c(kidneyR1L1) ## only use the data from kidneyR1L1 and liverR1L2
mapResultBatch2 <- c(liverR1L2)
outputDir <- file.path(tempdir(), "DEGseqExample")
DEGseq(mapResultBatch1, mapResultBatch2, fileFormat="bed", refFlat=refFlat,
outputDir=outputDir, method="LRT")
cat("outputDir:", outputDir, "")
Run the code above in your browser using DataLab