DEGseq(mapResultBatch1, mapResultBatch2, fileFormat="bed", readLength=32,
       strandInfo=FALSE, refFlat, groupLabel1="group1", groupLabel2="group2",
       method=c("LRT", "CTR", "FET", "MARS", "MATR", "FC"), 
       pValue=1e-3, zScore=4, qValue=1e-3, foldChange=4, thresholdKind=1,
       outputDir="none", normalMethod=c("none", "loess", "median"),
       depthKind=1, replicate1="none", replicate2="none",
       replicateLabel1="replicate1", replicateLabel2="replicate2")method="CTR").method="CTR")."bed" or "eland".
                    
example of "bed" format: chr12    7    38    readID    2    +
                    
example of "eland" format: readID    chr12.fa    7    U2    F
                    
Note: The field separator character is TAB. And the files must
                        follow the format as one of the examples.fileFormat="eland")."TRUE": retained,"FALSE": not retained."LRT":  Likelihood Ratio Test (Marioni et al. 2008),"CTR":  Check whether the variation between two Technical Replicates
                                        can be explained by the random sampling model (Wang et al. 2009),"FET":  Fisher's Exact Test (Joshua et al. 2009),"MARS":  MA-plot-based method with Random Sampling model (Wang et al. 2009),"MATR":  MA-plot-based method with Technical Replicates (Wang et al. 2009),"FC":  Fold-Change threshold on MA-plot.LRT, FET, MARS, MATR). 
                
only used when thresholdKind=1.MARS, MATR). 
                
only used when thresholdKind=2.LRT, FET, MARS, MATR).
                
only used when thresholdKind=3 or thresholdKind=4.1:  pValue threshold,2:  zScore threshold,3:  qValue threshold (Benjamini et al. 1995),4:  qValue threshold (Storey et al. 2003),5:  qValue threshold (Storey et al. 2003) and Fold-Change threshold on MA-plot are both required (can be used only whenmethod="MARS").FC)."none", "loess", "median" (Yang,Y.H. et al. 2002). 
recommend: "none".1: take the total number of reads uniquely mapped to genome as the depth for each replicate, 
0: take the total number of reads uniquely mapped to all annotated genes as the depth for each replicate. 
We recommend taking depthKind=1, 
                   especially when the genes in annotation file are part of all genes.method="MATR").method="MATR").method="MATR").method="MATR").Jiang,H. and Wong,W.H. (2009) Statistical inferences for isoform expression in RNA-seq. Bioinformatics, 25, 1026-1032.
Bloom,J.S. et al. (2009) Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays. BMC Genomics, 10, 221.
Marioni,J.C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517.
Storey,J.D. and Tibshirani,R. (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. 100, 9440-9445. Wang,L.K. and et al. (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics 26, 136 - 138. Yang,Y.H. et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30, e15.
DEGexp,
 getGeneExp,
 readGeneExp,
 kidneyChr21.bed,
 liverChr21.bed,
 refFlatChr21.kidneyR1L1 <- system.file("extdata", "kidneyChr21.bed.txt", package="DEGseq")
  liverR1L2  <- system.file("extdata", "liverChr21.bed.txt", package="DEGseq")
  refFlat    <- system.file("extdata", "refFlatChr21.txt", package="DEGseq")
  mapResultBatch1 <- c(kidneyR1L1)  ## only use the data from kidneyR1L1 and liverR1L2
  mapResultBatch2 <- c(liverR1L2)
  outputDir <- file.path(tempdir(), "DEGseqExample")
  DEGseq(mapResultBatch1, mapResultBatch2, fileFormat="bed", refFlat=refFlat,
         outputDir=outputDir, method="LRT")
  cat("outputDir:", outputDir, "")Run the code above in your browser using DataLab