# NOT RUN {
####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples using
#### command + shift + C |OR| control + shift + C
####=========================================####
data(DT_technow)
DT <- DT_technow
Md <- Md_technow
Mf <- Mf_technow
# Md <- (Md*2) - 1
# Mf <- (Mf*2) - 1
# Ad <- A.mat(Md)
# Af <- A.mat(Mf)
####=========================================####
####=========================================####
# ans2 <- mmer(GY~1,
# random=~vs(dent,Gu=Ad) + vs(flint,Gu=Af),
# rcov=~units,
# data=DT)
# summary(ans2)
####=========================================####
#### multivariate overlayed model
####=========================================####
# M <- rbind(Md,Mf)
# A <- A.mat(M)
# ans3 <- mmer(cbind(GY,GM)~1,
# random=~vs(overlay(dent,flint),Gu=A),
# rcov=~vs(units,Gtc=diag(2)),
# data=DT)
# summary(ans2)
# cov2cor(ans3$sigma[[1]])
# ####=========================================####
# #### Hybrid GWAS
# ####=========================================####
# M <- (rbind(Md,Mf) *2 )-1
# inds <- colnames(overlay(DT$dent,DT$flint)[[1]])
# Minds <- M[inds,]
#
# A <- A.mat(Minds)
# A[1:4,1:4]
# ans3 <- GWAS(GM~1, iters = 20,
# random=~vs(overlay(dent,flint),Gu=A),
# rcov=~vs(units),na.method.Y = "include",
# M=Minds, gTerm="dent",
# data=DT)
# plot(ans3$scores[1,])
# }
Run the code above in your browser using DataLab