Learn R Programming

r6qualitytools

The goal of r6qualitytools is to provide a comprehensive suite of statistical tools for Quality Management, designed around the Define, Measure, Analyze, Improve, and Control (DMAIC) cycle used in Six Sigma methodology. It builds on the original discontinued CRAN package qualitytools, enhancing it with R6 object-oriented programming, modernizing the graphics with ggplot2 and plotly, and adopting tidyverse principles for data manipulation and visualization.

Installation

install.packages("r6qualitytools")
library("r6qualitytools")

Overview

r6qualitytools includes various tools to manage quality science processes efficiently:

  • DMAIC methodology: tools designed around the Six Sigma cycle.
  • R6-based design: uses R6 classes for flexibility and performance.
  • Interactive graphics: modern visualizations with ggplot2 and plotly.
  • tidyverse integration: easy data manipulation and visualization.

It supports a variety of analyses relevant to quality management, offering an intuitive interface for both beginners and advanced users.

For more details, see the package documentation.

Usage

You can use the package to generate statistical models and control charts efficiently. Here are basic examples that demonstrates the use of the package:

library(r6qualitytools)

# Object of Class Distr - Normal
set.seed(123)
data <- rnorm(100, mean = 5, sd = 2)
parameters <- list(mean = 5, sd = 2)
distr <- Distr$new(x = data, name = "normal", parameters = parameters, sd = 2, n = 100, loglik = -120)
distr$plot()
# Class DistrCollection
data2 <- rpois(100, lambda = 3)
parameters2 <- list(lambda = 3)
distr2 <- Distr$new(x = data2, name = "poisson", parameters = parameters2, sd = sqrt(3), n = 100, loglik = -150)
distr2$plot()

collection <- DistrCollection$new()
collection$add(distr)
collection$add(distr2)
collection$summary()
#> 
#> ------ Fitted Distribution and estimated parameters ------
#> 
#> fitted distribution is normal :
#> $mean
#> [1] 5
#> 
#> $sd
#> [1] 2
#> 
#> 
#> fitted distribution is poisson :
#> $lambda
#> [1] 3
#> 
#> 
#> 
#> ------ Goodness of Fit - Anderson Darling Test ------
#> 
#>   Distribution     A p.value
#> 1       normal 0.182  0.9104
#> 2      poisson 5.733      NA
# qqPlot and ppPlot
set.seed(1234)
x <- rnorm(20, mean = 20)
qqPlot(x, "normal", bounds.lty = 3, bounds.col = "red")
ppPlot(x, "normal", bounds.lty = 3, bounds.col = "red")
# Gage capacity
x <- c( 9.991, 10.013, 10.001, 10.007, 10.010, 10.013, 10.008, 10.017, 10.005, 10.005, 10.002,
        10.017, 10.005, 10.002, 9.996, 10.011, 10.009 , 10.006, 10.008, 10.003, 10.002, 10.006, 
        10.010, 9.992, 10.013)

cg(x, target = 10.003, tolerance = c(9.903, 10.103))
# Process Capability
set.seed(1234)
data <- rnorm(20, mean = 20)
pcr(data, "normal", lsl = 17, usl = 23)
#> Scale for x is already present.
#> Adding another scale for x, which will replace the existing scale.
#> 
#>  Anderson Darling Test for normal distribution
#> 
#> data:  data 
#> A = 0.5722, mean = 19.749, sd = 1.014, p-value = 0.1191
#> alternative hypothesis: true distribution is not equal to normal
# Gage R&R Design
gdo <- gageRRDesign(Operators = 3, Parts = 10, Measurements = 3, randomize = FALSE, method='nested')
# vector of responses
y <- c(0.29,0.08, 0.04,-0.56,-0.47,-1.38,1.34,1.19,0.88,0.47,0.01,0.14,-0.80,
      -0.56,-1.46, 0.02,-0.20,-0.29,0.59,0.47,0.02,-0.31,-0.63,-0.46,2.26,
      1.80,1.77,-1.36,-1.68,-1.49,0.41,0.25,-0.11,-0.68,-1.22,-1.13,1.17,0.94,
      1.09,0.50,1.03,0.20,-0.92,-1.20,-1.07,-0.11, 0.22,-0.67,0.75,0.55,0.01,
      -0.20, 0.08,-0.56,1.99,2.12,1.45,-1.25,-1.62,-1.77,0.64,0.07,-0.15,-0.58,
      -0.68,-0.96,1.27,1.34,0.67,0.64,0.20,0.11,-0.84,-1.28,-1.45,-0.21,0.06,
      -0.49,0.66,0.83,0.21,-0.17,-0.34,-0.49,2.01,2.19,1.87,-1.31,-1.50,-2.16)
gdo$response(y)

gdo <- gageRR(gdo, method='nested')
#> 
#> AnOVa Table -  nested Design
#>               Df Sum Sq Mean Sq F value Pr(>F)    
#> Operator       2   0.01   0.003   0.029  0.972    
#> Operator:Part 27  89.03   3.298  35.283 <2e-16 ***
#> Residuals     60   5.61   0.093                   
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> ----------
#> 
#> Gage R&R
#>                  VarComp VarCompContrib Stdev StudyVar StudyVarContrib
#> totalRR           0.0935         0.0805 0.306     1.83           0.284
#>  repeatability    0.0935         0.0805 0.306     1.83           0.284
#>  reproducibility  0.0000         0.0000 0.000     0.00           0.000
#> Part to Part      1.0680         0.9195 1.033     6.20           0.959
#> totalVar          1.1615         1.0000 1.078     6.47           1.000
#> 
#> ---
#>  * Contrib equals Contribution in %
#>  **Number of Distinct Categories (truncated signal-to-noise-ratio) = 4

# Using Plots
gdo$errorPlot()
gdo$whiskersPlot()
gdo$averagePlot()
gdo$compPlot()
# Factorial Designs
vp.full <- facDesign(k = 3)
y = rnorm(2^3)
vp.full$.response(y)
vp.full$summary()
#> Information about the factors:
#> 
#>            A       B       C
#> low       -1      -1      -1
#> high       1       1       1
#> name       A       B       C
#> unit                        
#> type numeric numeric numeric
#> -----------
#>   StandOrder RunOrder Block  A  B  C           y
#> 7          7        1     1 -1  1  1  0.03572991
#> 2          2        2     1  1 -1 -1  0.11297506
#> 6          6        3     1  1 -1  1  1.42855203
#> 1          1        4     1 -1 -1 -1  0.98340378
#> 4          4        5     1  1  1 -1 -0.62245679
#> 3          3        6     1 -1  1 -1 -0.73153600
#> 8          8        7     1  1  1  1 -0.51666972
#> 5          5        8     1 -1 -1  1 -1.75073344
vp.full$effectPlot()

# Plots
paretoPlot(vp.full, p.col = "Pastel1")
#> Scale for y is already present.
#> Adding another scale for y, which will replace the existing scale.
normalPlot(vp.full)
wire1 <- wirePlot(A,B,y, data = vp.full)
wire1$plot
contour1 <- contourPlot(A,B,y, data = vp.full)
contour1$plot
# Mix Design
mdo <- mixDesign(3, 2, center = FALSE, axial = FALSE, randomize = FALSE, replicates = c(1, 1, 2, 3))

mdo$names(c("polyethylene", "polystyrene", "polypropylene"))
elongation <- c(11.0, 12.4, 15.0, 14.8, 16.1, 17.7, 16.4, 16.6, 8.8, 10.0, 10.0, 9.7, 11.8, 16.8, 16.0)
mdo$.response(elongation)
mdo$summary()
#> Simplex LATTICE Design
#> Information about the factors:
#> 
#>      polyethylene polystyrene polypropylene
#> low             0           0             0
#> high            1           1             1
#> name polyethylene polystyrene polypropylene
#> unit            %           %             %
#> type      numeric     numeric       numeric
#> 
#> -----------
#> 
#> Information about the Design Points:
#> 
#>            1-blend 2-blend
#> Unique           3       3
#> Replicates       2       3
#> Sub Total        6       9
#> Total           15        
#> 
#> -----------
#> 
#> Information about the constraints:
#> 
#> A >= 0 B >= 0 C >= 0
#> 
#> -----------
#> 
#>                               PseudoComponent _|_ Proportion _|_ Amount
#> 
#>    StandOrder RunOrder    Type |   A   B   C _ | _   A   B   C _ | _   A   B
#> 1           1        1 1-blend | 1.0 0.0 0.0   |   1.0 0.0 0.0   |   1.0 0.0
#> 2           2        2 1-blend | 1.0 0.0 0.0   |   1.0 0.0 0.0   |   1.0 0.0
#> 3           3        3 2-blend | 0.5 0.5 0.0   |   0.5 0.5 0.0   |   0.5 0.5
#> 4           4        4 2-blend | 0.5 0.5 0.0   |   0.5 0.5 0.0   |   0.5 0.5
#> 5           5        5 2-blend | 0.5 0.5 0.0   |   0.5 0.5 0.0   |   0.5 0.5
#> 6           6        6 2-blend | 0.5 0.0 0.5   |   0.5 0.0 0.5   |   0.5 0.0
#> 7           7        7 2-blend | 0.5 0.0 0.5   |   0.5 0.0 0.5   |   0.5 0.0
#> 8           8        8 2-blend | 0.5 0.0 0.5   |   0.5 0.0 0.5   |   0.5 0.0
#> 9           9        9 1-blend | 0.0 1.0 0.0   |   0.0 1.0 0.0   |   0.0 1.0
#> 10         10       10 1-blend | 0.0 1.0 0.0   |   0.0 1.0 0.0   |   0.0 1.0
#> 11         11       11 2-blend | 0.0 0.5 0.5   |   0.0 0.5 0.5   |   0.0 0.5
#> 12         12       12 2-blend | 0.0 0.5 0.5   |   0.0 0.5 0.5   |   0.0 0.5
#> 13         13       13 2-blend | 0.0 0.5 0.5   |   0.0 0.5 0.5   |   0.0 0.5
#> 14         14       14 1-blend | 0.0 0.0 1.0   |   0.0 0.0 1.0   |   0.0 0.0
#> 15         15       15 1-blend | 0.0 0.0 1.0   |   0.0 0.0 1.0   |   0.0 0.0
#>      C | elongation
#> 1  0.0 |       11.0
#> 2  0.0 |       12.4
#> 3  0.0 |       15.0
#> 4  0.0 |       14.8
#> 5  0.0 |       16.1
#> 6  0.5 |       17.7
#> 7  0.5 |       16.4
#> 8  0.5 |       16.6
#> 9  0.0 |        8.8
#> 10 0.0 |       10.0
#> 11 0.5 |       10.0
#> 12 0.5 |        9.7
#> 13 0.5 |       11.8
#> 14 1.0 |       16.8
#> 15 1.0 |       16.0
#> 
#> -----------
#> 
#> Mixture Total: 1 equals 1

contour3 <- contourPlot3(A, B, C, elongation, data = mdo, form = "quadratic")
contour3$plot
wire3 <- wirePlot3(A, B, C, elongation, data = mdo, form = "quadratic")
wire3$plot
# Taguchi Design
tdo <- taguchiDesign("L9_3",randomize=F)
tdo$values(list(A = c("material 1", "material 2", "material 3"), B = c(29, 30, 35)))
tdo$names(c("Factor 1", "Factor 2", "Factor 3", "Factor 4"))
set.seed(1)
tdo$.response(rnorm(9))
tdo$summary()
#> Taguchi SINGLE Design
#> Information about the factors:
#> 
#>                  A        B        C        D
#> value 1 material 1       29        1        1
#> value 2 material 2       30        2        2
#> value 3 material 3       35        3        3
#> name      Factor 1 Factor 2 Factor 3 Factor 4
#> unit                                         
#> type       numeric  numeric  numeric  numeric
#> 
#> -----------
#> 
#>   StandOrder RunOrder Replicate A B C D   rnorm(9)
#> 1          1        1         1 1 1 1 1 -0.6264538
#> 2          2        2         1 1 2 2 2  0.1836433
#> 3          3        3         1 1 3 3 3 -0.8356286
#> 4          4        4         1 2 1 2 3  1.5952808
#> 5          5        5         1 2 2 3 1  0.3295078
#> 6          6        6         1 2 3 1 2 -0.8204684
#> 7          7        7         1 3 1 3 2  0.4874291
#> 8          8        8         1 3 2 1 3  0.7383247
#> 9          9        9         1 3 3 2 1  0.5757814
#> 
#> -----------
tdo$effectPlot()
# Plackett-Burman Design
pbdo<- pbDesign(26)
pbdo$summary()
#> Plackett-Burman  Design
#> Information about the factors:
#> 
#>               A       B       C       D       E       F       G       H       J
#> value 1      -1      -1      -1      -1      -1      -1      -1      -1      -1
#> value 2       1       1       1       1       1       1       1       1       1
#> name                                                                           
#> unit                                                                           
#> type    numeric numeric numeric numeric numeric numeric numeric numeric numeric
#>               K       L       M       N       O       P       Q       R       S
#> value 1      -1      -1      -1      -1      -1      -1      -1      -1      -1
#> value 2       1       1       1       1       1       1       1       1       1
#> name                                                                           
#> unit                                                                           
#> type    numeric numeric numeric numeric numeric numeric numeric numeric numeric
#>               T       U       V       W       X       Y       Z
#> value 1      -1      -1      -1      -1      -1      -1      -1
#> value 2       1       1       1       1       1       1       1
#> name                                                           
#> unit                                                           
#> type    numeric numeric numeric numeric numeric numeric numeric
#> 
#> -----------
#> 
#>    StandOrder RunOrder Replicate  A  B  C  D  E  F  G  H  J  K  L  M  N  O  P
#> 1          16        1         1  1 -1  1  1 -1 -1 -1  1  1  1  1  1 -1 -1  1
#> 2          11        2         1 -1 -1  1  1  1  1  1 -1 -1  1 -1 -1 -1 -1  1
#> 3          18        3         1  1  1  1 -1  1  1 -1 -1 -1  1  1  1  1  1 -1
#> 4          17        4         1  1  1 -1  1  1 -1 -1 -1  1  1  1  1  1 -1 -1
#> 5           6        5         1  1  1 -1 -1  1 -1 -1 -1 -1  1 -1  1 -1  1  1
#> 6          19        6         1 -1  1  1  1 -1  1  1 -1 -1 -1  1  1  1  1  1
#> 7           2        7         1  1 -1 -1 -1 -1  1 -1  1 -1  1  1  1 -1  1  1
#> 8          24        8         1 -1 -1  1 -1  1 -1  1  1  1 -1  1  1 -1 -1 -1
#> 9           3        9         1 -1  1 -1 -1 -1 -1  1 -1  1 -1  1  1  1 -1  1
#> 10          1       10         1 -1 -1 -1 -1  1 -1  1 -1  1  1  1 -1  1  1 -1
#> 11         26       11         1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
#> 12         15       12         1 -1  1  1 -1 -1 -1  1  1  1  1  1 -1 -1  1 -1
#> 13         25       13         1 -1 -1 -1  1 -1  1 -1  1  1  1 -1  1  1 -1 -1
#> 14          8       14         1  1  1  1  1 -1 -1  1 -1 -1 -1 -1  1 -1  1 -1
#> 15          4       15         1 -1 -1  1 -1 -1 -1 -1  1 -1  1 -1  1  1  1 -1
#> 16         20       16         1  1 -1  1  1  1 -1  1  1 -1 -1 -1  1  1  1  1
#> 17         23       17         1 -1  1 -1  1 -1  1  1  1 -1  1  1 -1 -1 -1  1
#> 18         10       18         1 -1  1  1  1  1  1 -1 -1  1 -1 -1 -1 -1  1 -1
#> 19         13       19         1  1 -1 -1 -1  1  1  1  1  1 -1 -1  1 -1 -1 -1
#> 20         14       20         1  1  1 -1 -1 -1  1  1  1  1  1 -1 -1  1 -1 -1
#> 21          5       21         1  1 -1 -1  1 -1 -1 -1 -1  1 -1  1 -1  1  1  1
#> 22          9       22         1  1  1  1  1  1 -1 -1  1 -1 -1 -1 -1  1 -1  1
#> 23         22       23         1  1 -1  1 -1  1  1  1 -1  1  1 -1 -1 -1  1  1
#> 24          7       24         1  1  1  1 -1 -1  1 -1 -1 -1 -1  1 -1  1 -1  1
#> 25         21       25         1 -1  1 -1  1  1  1 -1  1  1 -1 -1 -1  1  1  1
#> 26         12       26         1 -1 -1 -1  1  1  1  1  1 -1 -1  1 -1 -1 -1 -1
#>     Q  R  S  T  U  V  W  X  Y  Z  y
#> 1  -1 -1 -1 -1  1 -1  1 -1  1  1 NA
#> 2  -1  1 -1  1  1  1 -1  1  1 -1 NA
#> 3  -1  1 -1 -1 -1 -1  1 -1  1 -1 NA
#> 4   1 -1 -1 -1 -1  1 -1  1 -1  1 NA
#> 5   1 -1  1  1 -1 -1 -1  1  1  1 NA
#> 6  -1 -1  1 -1 -1 -1 -1  1 -1  1 NA
#> 7  -1 -1 -1  1  1  1  1  1 -1 -1 NA
#> 8   1  1  1  1  1 -1 -1  1 -1 -1 NA
#> 9   1 -1 -1 -1  1  1  1  1  1 -1 NA
#> 10 -1 -1  1  1  1  1  1 -1 -1  1 NA
#> 11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 NA
#> 12 -1 -1 -1  1 -1  1 -1  1  1  1 NA
#> 13 -1  1  1  1  1  1 -1 -1  1 -1 NA
#> 14  1  1  1 -1  1  1 -1 -1 -1  1 NA
#> 15  1  1 -1 -1 -1  1  1  1  1  1 NA
#> 16  1 -1 -1  1 -1 -1 -1 -1  1 -1 NA
#> 17  1  1  1  1 -1 -1  1 -1 -1 -1 NA
#> 18  1 -1  1  1  1 -1  1  1 -1 -1 NA
#> 19 -1  1 -1  1 -1  1  1  1 -1  1 NA
#> 20 -1 -1  1 -1  1 -1  1  1  1 -1 NA
#> 21 -1  1  1 -1 -1 -1  1  1  1  1 NA
#> 22 -1  1  1  1 -1  1  1 -1 -1 -1 NA
#> 23  1  1  1 -1 -1  1 -1 -1 -1 -1 NA
#> 24  1  1 -1  1  1 -1 -1 -1  1  1 NA
#> 25  1  1 -1 -1  1 -1 -1 -1 -1  1 NA
#> 26  1 -1  1 -1  1  1  1 -1  1  1 NA
#> 
#> -----------
# gageLin Design
A=c(2.7,2.5,2.4,2.5,2.7,2.3,2.5,2.5,2.4,2.4,2.6,2.4)
B=c(5.1,3.9,4.2,5,3.8,3.9,3.9,3.9,3.9,4,4.1,3.8)
C=c(5.8,5.7,5.9,5.9,6,6.1,6,6.1,6.4,6.3,6,6.1)
D=c(7.6,7.7,7.8,7.7,7.8,7.8,7.8,7.7,7.8,7.5,7.6,7.7)
E=c(9.1,9.3,9.5,9.3,9.4,9.5,9.5,9.5,9.6,9.2,9.3,9.4)

test=gageLinDesign(ref=c(2,4,6,8,10),n=12)
Messungen=data.frame(rbind(A,B,C,D,E))
test$response(Messungen)
test$summary()
#> ----------------------
#>   Part Ref  X1  X2  X3  X4  X5  X6  X7  X8  X9 X10 X11 X12
#> A    1   2 2.7 2.5 2.4 2.5 2.7 2.3 2.5 2.5 2.4 2.4 2.6 2.4
#> B    2   4 5.1 3.9 4.2 5.0 3.8 3.9 3.9 3.9 3.9 4.0 4.1 3.8
#> C    3   6 5.8 5.7 5.9 5.9 6.0 6.1 6.0 6.1 6.4 6.3 6.0 6.1
#> D    4   8 7.6 7.7 7.8 7.7 7.8 7.8 7.8 7.7 7.8 7.5 7.6 7.7
#> E    5  10 9.1 9.3 9.5 9.3 9.4 9.5 9.5 9.5 9.6 9.2 9.3 9.4
#> ----------------------

MSALin=gageLin(test,lty=c(3,4), plot = FALSE)
#> ----------------------
#> BIAS:
#>     X1   X2   X3   X4   X5   X6   X7   X8   X9  X10  X11  X12
#> A  0.7  0.5  0.4  0.5  0.7  0.3  0.5  0.5  0.4  0.4  0.6  0.4
#> B  1.1 -0.1  0.2  1.0 -0.2 -0.1 -0.1 -0.1 -0.1  0.0  0.1 -0.2
#> C -0.2 -0.3 -0.1 -0.1  0.0  0.1  0.0  0.1  0.4  0.3  0.0  0.1
#> D -0.4 -0.3 -0.2 -0.3 -0.2 -0.2 -0.2 -0.3 -0.2 -0.5 -0.4 -0.3
#> E -0.9 -0.7 -0.5 -0.7 -0.6 -0.5 -0.5 -0.5 -0.4 -0.8 -0.7 -0.6
#> ----------------------
#> MEAN OF BIAS:
#>          A          B          C          D          E 
#>  0.4916667  0.1250000  0.0250000 -0.2916667 -0.6166667 
#> ----------------------
#> LINEAR MODEL:
#> 
#> Call:
#> lm(formula = BIAS ~ ref)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -0.41000 -0.12000  0.01667  0.11667  0.89000 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  0.73667    0.07252   10.16 1.73e-14 ***
#> ref         -0.13167    0.01093  -12.04  < 2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 0.2395 on 58 degrees of freedom
#> Multiple R-squared:  0.7143, Adjusted R-squared:  0.7094 
#> F-statistic:   145 on 1 and 58 DF,  p-value: < 2.2e-16
#> 
#> ----------------------
#> LINEARITY: 
#>   13.16667
MSALin$plot()

Getting help

If you encounter any issues or have questions, please file an issue with a reproducible example at the GitHub repo.

Copy Link

Version

Install

install.packages('r6qualitytools')

Version

1.0.1

License

GPL (>= 3)

Issues

Pull Requests

Stars

Forks

Last Published

October 3rd, 2024

Functions in r6qualitytools (1.0.1)

desirability.c

desirability-class: Class `desirability`
desOpt

desOpt-class: Class `desOpt`
dgamma3

dgamma3: The gamma Distribution (3 Parameter)
code2real

code2real: Coding
contourPlot

contourPlot: Contour Plot
cg_RunChart

cg_RunChart
contourPlot3

contourPlot3: Ternary plot
confounds

confounds: Confounded Effects
desirability

desirability: Desirability Function.
cg_ToleranceChart

cg_ToleranceChart
fracDesign

fracDesign
dlnorm3

dlnorm3: The Lognormal Distribution (3 Parameter)
distribution

distribution: Distribution
facDesign.c

facDesign-class: Class `facDesign`
dweibull3

dweibull3: The Weibull Distribution (3 Parameter)
dotPlot

dotPlot: Function to create a dot plot
facDesign

facDesign
doeFactor

doeFactor-class: Class `doeFactor`
gageLin

gageLin: Function to visualize and calucalte the linearity of a gage.
fracChoose

fracChoose: Choosing a fractional or full factorial design from a table.
gageLinDesign

gageLinDesign: Function to create a object of class MSALinearity.
gageRRDesign

gageRRDesign: Gage R&R - Gage Repeatability and Reproducibility
interactionPlot

interactionPlot
normalPlot

normalPlot: Normal plot
gageRR

gageRR: Gage R&R - Gage Repeatability and Reproducibility
gageRR.c

gageRR-class: Class `gageRR`
oaChoose

oaChoose: Taguchi Designs
mixDesign.c

mixDesign-class: Class `mixDesign`
pgamma3

pgamma3: The gamma Distribution (3 Parameter)
pbDesign

pbDesign: Plackett-Burman Designs
mixDesign

mixDesign: Mixture Designs
optimum

optimum: Optimal factor settings
mvPlot

mvPlot: Function to create a multi-variable plot
pbFactor

pbFactor
pbDesign.c

pbDesign
paretoPlot

paretoPlot
plnorm3

plnorm3: The Lognormal Distribution (3 Parameter)
paretoChart

paretoChart: Pareto Chart
overall

overall: Overall Desirability.
pcr

pcr: Process Capability Indices
randomize

randomize: Randomization
pweibull3

pweibull3: The Weibull Distribution (3 Parameter)
qgamma3

qgamma3: The gamma Distribution (3 Parameter)
qweibull3

qweibull3: The Weibull Distribution (3 Parameter)
rsmChoose

rsmChoose: Choosing a response surface design from a table
qlnorm3

qlnorm3: The Lognormal Distribution (3 Parameter)
qqPlot

qqPlot: Quantile-Quantile Plots for various distributions
rsmDesign

rsmDesign: Generate a response surface design.
print_adtest

print_adtest: Test Statistics
taguchiChoose

taguchiChoose: Taguchi Designs
taguchiDesign

taguchiDesign: Taguchi Designs
starDesign

starDesign: Axial Design
ppPlot

ppPlot: Probability Plots for various distributions
summaryFits

summaryFits: Fit Summary
steepAscent.c

steepAscent-class: Class `steepAscent`
steepAscent

steepAscent: Steepest Ascent
simProc

simProc: Simulated Process
snPlot

snPlot: Signal-to-Noise-Ratio Plots
taguchiDesign.c

taguchiDesign
taguchiFactor

taguchiFactor
wirePlot

wirePlot: 3D Plot
wirePlot3

wirePlot3: function to create a ternary plot (3D wire plot)
cg_HistChart

cg_HistChart
cg

cg: Function to calculate and visualize the gage capability.
FitDistr

FitDistr: Maximum-likelihood Fitting of Univariate Distributions
DistrCollection

DistrCollection-class: Class `DistrCollection`
Distr

Distr-class: Class `Distr`
MSALinearity

MSALinearity-class: Class `MSALinearity`
adSim

adSim: Bootstrap-based Anderson-Darling Test for Univariate
aliasTable

aliasTable: Display an alias table
blocking

blocking: Blocking
as.data.frame_facDesign

as.data.frame_facDesign: Coerce to a data.frame