## a full quadratic model with constraint in three quantitative factors
plan <- Dopt.design(36,factor.names=list(eins=c(100,250),zwei=c(10,30),drei=c(-25,25)),
nlevels=c(4,3,6),
formula=~quad(.),
constraint="!(eins>=200 & zwei==30 & drei==25)")
plan
cor(plan)
y <- rnorm(36)
r.plan <- add.response(plan, y)
plan2 <- Dopt.augment(r.plan, m=10)
plot(plan2)
cor(plan2)
## designs with qualitative factors and blocks for
## an experiment on assessing stories of social situations
## where each subject is a block and receives a deck of 5 stories
plan.v <- Dopt.design(480, factor.names=list(cause=c("sick","bad luck","fault"),
consequences=c("alone","children","sick spouse"),
gender=c("Female","Male"),
Age=c("young","medium","old")),
blocks=96,
constraint="!(Age=="young" & consequences=="children")",
formula=~.+cause:consequences+gender:consequences+Age:cause)
## an experiment on assessing stories of social situations
## with the whole block (=whole plot) factor gender of the assessor
## not run for saving test time on CRAN
plan.v.splitplot <- Dopt.design(480, factor.names=list(cause=c("sick","bad luck","fault"),
consequences=c("alone","children","sick spouse"),
gender.story=c("Female","Male"),
Age=c("young","medium","old")),
blocks=96,
wholeBlockData=cbind(gender=rep(c("Female","Male"),each=48)),
constraint="!(Age==\"young\" & consequences==\"children\")",
formula=~.+gender+cause:consequences+gender.story:consequences+
gender:consequences+Age:cause+gender:gender.story)
Run the code above in your browser using DataLab