EBSProfiles(data=numeric(), model=1, K = 3, hyper = numeric(),
theta = numeric(), var = numeric(), homoscedastic = FALSE, unif= TRUE)
For the Poisson model, Gamma(1,1) is used. For Negative Binomial model, Jeffreys' prior, Beta(1/2,1/2) is used. For the Normal Homoscedastic, N(0,1) is used for a prior on the mean. Finally, for the Normal Heteroscedastic, the package computes the MAD on the data and fits an inverse-gamma distribution on the result. The parameters are used for the prior on the variance: IG(alpha,beta), and the prior on the mean is N(0,2*beta).
Cleynen & Robin (2014): Comparing change-point location in independent series Statistics and Computing
Johnson, Kotz & Kemp: Univariate Discrete Distributions
Hall, Kay & Titterington: Asymptotically optimal difference-based estimation of variance in non-parametric regression
EBSegmentation
# changes for Poisson model
set.seed(1)
x1<-c(rpois(125,1),rpois(100,5),rpois(50,1),rpois(75,5),rpois(50,1))
x2<-c(rpois(125,3),rpois(75,4),rpois(75,1),rpois(125,8))
M<-rbind(x1,x2)
out <- EBSProfiles(M,model=1,K=10)
Run the code above in your browser using DataLab