Learn R Programming

bruceR (version 0.7.2)

EFA: Exploratory factor analysis (EFA).

Description

An extension of jmv::efa().

Usage

EFA(
  data,
  vartext,
  method = "eigen",
  extraction = "pa",
  rotation = "varimax",
  nFactors = 1,
  hideLoadings = 0.3
)

Arguments

data

Data frame.

vartext

Character string specifying the model (e.g., "X[1:5] + Y[c(1,3)] + Z").

method

"eigen" (default), "parallel", or "fixed", the way to determine the number of factors.

extraction

"pa" (default), "ml", or "minres", using "principal axis", "maximum likelihood", or "minimum residual" as the factor extraction method, respectively.

rotation

"varimax" (default), "oblimin", or "none", the rotation method.

nFactors

An integer (default is 1) fixing the number of factors. Only relevant when method="fixed".

hideLoadings

A number (0~1, default is 0.3) for hiding factor loadings below this value.

Value

No return value.

See Also

jmv::efa()

Examples

Run this code
# NOT RUN {
EFA(bfi, "E[1:5] + A[1:5] + C[1:5] + N[1:5] + O[1:5]", method="fixed", nFactors=5)
# }

Run the code above in your browser using DataLab