Learn R Programming

gamlss.dist (version 4.3-4)

EGB2: The exponential generalized Beta type 2 distribution for fitting a GAMLSS

Description

This function defines the generalized t distribution, a four parameter distribution. The response variable is in the range from minus infinity to plus infinity. The functions dEGB2, pEGB2, qEGB2 and rEGB2 define the density, distribution function, quantile function and random generation for the generalized beta type 2 distribution.

Usage

EGB2(mu.link = "identity", sigma.link = "identity", nu.link = "log", 
      tau.link = "log")
dEGB2(x, mu = 0, sigma = 1, nu = 1, tau = 0.5, log = FALSE)
pEGB2(q, mu = 0, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE, 
      log.p = FALSE)
qEGB2(p, mu = 0, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE, 
      log.p = FALSE)
rEGB2(n, mu = 0, sigma = 1, nu = 1, tau = 0.5)

Arguments

mu.link
Defines the mu.link, with "identity" link as the default for the mu parameter.
sigma.link
Defines the sigma.link, with "log" link as the default for the sigma parameter.
nu.link
Defines the nu.link, with "log" link as the default for the nu parameter.
tau.link
Defines the tau.link, with "log" link as the default for the tau parameter.
x,q
vector of quantiles
mu
vector of location parameter values
sigma
vector of scale parameter values
nu
vector of skewness nu parameter values
tau
vector of kurtosis tau parameter values
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x],="" otherwise,="" p[x=""> x]
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken to be the number required

Value

  • EGB2() returns a gamlss.family object which can be used to fit the EGB2 distribution in the gamlss() function. dEGB2() gives the density, pEGB2() gives the distribution function, qEGB2() gives the quantile function, and rEGB2() generates random deviates.

Details

The probability density function of the Generalized Beta type 2, (GB2), is defined as $$f(y|\mu,\sigma\,\nu,\tau)= e^{\mbox{\hspace{0.01cm}}\nu \mbox{\hspace{0.01cm}}z } {|\sigma|\mbox{\hspace{0.05cm}} B(\nu,\tau) \mbox{\hspace{0.05cm}} [1+e^z]^{\nu+\tau}}^{-1}$$

for $-\infty0$ and $\tau>0$, McDonald and Xu (1995).

References

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M. Rigby R. A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

gamlss.family, JSU, BCT

Examples

Run this code
EGB2()   # 
y<- rEGB2(200, mu=5, sigma=2, nu=1, tau=4)
library(MASS)
truehist(y)
fx<-dEGB2(seq(min(y), 20, length=200), mu=5 ,sigma=2, nu=1, tau=4)
lines(seq(min(y),20,length=200),fx)
# something funny here
# library(gamlss)
# histDist(y, family=EGB2, n.cyc=60)
integrate(function(x) x*dEGB2(x=x, mu=5, sigma=2, nu=1, tau=4), -Inf, Inf)
curve(dEGB2(x, mu=5 ,sigma=2, nu=1, tau=4), -10, 10, main = "The EGB2  density 
             mu=5, sigma=2, nu=1, tau=4")

Run the code above in your browser using DataLab