Learn R Programming

adoptr (version 0.2.2)

ConditionalSampleSize-class: (Conditional) Sample Size of a Design

Description

This score simply evaluates n(d, x1) for a design d and the first-stage outcome x1. The data distribution and prior are only relevant when it is integrated.

Usage

ConditionalSampleSize()

ExpectedSampleSize(dist, prior)

# S4 method for ConditionalSampleSize,TwoStageDesign evaluate(s, design, x1, optimization = FALSE, ...)

Arguments

dist

a univariate distribution object

prior

a Prior object

s

Score object

design

object

x1

stage-one test statistic

optimization

logical, if TRUE uses a relaxation to real parameters of the underlying design; used for smooth optimization.

...

further optional arguments

See Also

Scores

Examples

Run this code
# NOT RUN {
design <- TwoStageDesign(50, .0, 2.0, 50, 2.0, order = 5L)
prior  <- PointMassPrior(.4, 1)

css   <- ConditionalSampleSize()
evaluate(css, design, c(0, .5, 3))

ess   <- ExpectedSampleSize(Normal(), prior)

# those two are equivalent
evaluate(ess, design)
evaluate(expected(css, Normal(), prior), design)

# }

Run the code above in your browser using DataLab