FLLat.BIC(Y, J=min(15,floor(ncol(Y)/2)), B="pc", thresh=10^(-4), maxiter=100,
maxiter.B=1, maxiter.T=1)
"pc"
(the first J
principal components of Y
),
"rand"
(a random selection of J
columns of Y
), or
a user specified matrix of initial values, where rows correspond to
the probes and columns correspond to the features. The default is
"pc"
.Note that for extremely large data sets, this function may take some time to run.
For more details, please see Nowak and others (2011) and the package vignette.
FLLat
## Load simulated aCGH data.
data(simaCGH)
## Run FLLat.BIC to choose optimal tuning parameters for J = 5 features.
result.bic <- FLLat.BIC(simaCGH,J=5)
## Plot the features for the optimal FLLat model.
plot(result.bic$opt.FLLat)
## Plot a heatmap of the weights for the optimal FLLat model.
plot(result.bic$opt.FLLat,type="weights")
Run the code above in your browser using DataLab