# NOT RUN {
# }
# NOT RUN {
set.seed(23235)
ss <- TRUE # sample(1:150, 10 )
hc1 <- hclust(dist(iris[ss, -5]), "com")
hc2 <- hclust(dist(iris[ss, -5]), "single")
# dend1 <- as.dendrogram(hc1)
# dend2 <- as.dendrogram(hc2)
# cutree(dend1)
FM_index_R(cutree(hc1, k = 3), cutree(hc1, k = 3)) # 1
set.seed(1341)
FM_index_R(cutree(hc1, k = 3),
sample(cutree(hc1, k = 3)),
assume_sorted_vectors = TRUE) # 0.38037
FM_index_R(cutree(hc1, k = 3),
sample(cutree(hc1, k = 3)),
assume_sorted_vectors = FALSE) # 1 again :)
FM_index_R(cutree(hc1, k = 3),
cutree(hc2, k = 3)) # 0.8059
FM_index_R(cutree(hc1, k = 30),
cutree(hc2, k = 30)) # 0.4529
fo <- function(k) FM_index_R(cutree(hc1, k), cutree(hc2, k))
lapply(1:4, fo)
ks <- 1:150
plot(sapply(ks, fo) ~ ks, type = "b", main = "Bk plot for the iris dataset")
clu_1 <- cutree(hc2, k = 100) # this is a lie - since this one is NOT well defined!
clu_2 <- cutree(as.dendrogram(hc2), k = 100) # We see that we get a vector of NAs for this...
FM_index_R(clu_1, clu_2) # NA
# }
Run the code above in your browser using DataLab