## Not run:
#
# set.seed(23235)
# ss <- TRUE # sample(1:150, 10 )
# hc1 <- hclust(dist(iris[ss,-5]), "com")
# hc2 <- hclust(dist(iris[ss,-5]), "single")
# # dend1 <- as.dendrogram(hc1)
# # dend2 <- as.dendrogram(hc2)
# # cutree(dend1)
#
# FM_index_R(cutree(hc1, k=3), cutree(hc1, k=3)) # 1
# set.seed(1341)
# FM_index_R(cutree(hc1, k=3), sample(cutree(hc1, k=3)), assume_sorted_vectors =TRUE) # 0.38037
# FM_index_R(cutree(hc1, k=3), sample(cutree(hc1, k=3)), assume_sorted_vectors =FALSE) # 1 again :)
# FM_index_R(cutree(hc1, k=3), cutree(hc2, k=3)) # 0.8059
# FM_index_R(cutree(hc1, k=30), cutree(hc2, k=30)) # 0.4529
#
# fo <- function(k) FM_index_R(cutree(hc1, k), cutree(hc2, k))
# lapply(1:4, fo)
# ks <- 1:150
# plot(sapply(ks, fo)~ ks, type = "b", main = "Bk plot for the iris dataset")
#
# clu_1 <- cutree(hc2, k = 100) # this is a lie - since this one is NOT well defined!
# clu_2 <- cutree(as.dendrogram(hc2), k = 100) # We see that we get a vector of NAs for this...
#
# FM_index_R(clu_1, clu_2) # NA
#
# ## End(Not run)
Run the code above in your browser using DataLab