Learn R Programming

FitAR (version 1.94)

FitAR: Fit AR, ARp and ARz

Description

Exact MLE for full AR as well as subset AR. Both subset ARp and subset ARz models are implemented. For subset ARp models the R function arima is used. For full AR and subset ARz models, algorithm of McLeod & Zhang (2006) is implemented. The LS algorithm for subset ARp is also available as an option.

Usage

FitAR(z, p, lag.max = "default", ARModel = "ARz", ...)

Arguments

z
time series, vector or ts object.
p
p specifies the model. If length(p) is 1, an AR(p) is assumed and if p has length greater than 1, a subset ARp or ARz is assumed - the default is ARz. For example, to fit a subset model with lags 1 and 4 present, set p to c(1,4) or equivalently c(1,0,0,4). To fit a subset model with just lag 4, you must use p=c(0,0,0,4) since p=4 will fit a full AR(4).
lag.max
the residual autocorrelations are tabulated for lags 1, ..., lag.max. Also lag.max is used for the Ljung-Box portmanteau test.
ARModel
which subset model, ARz or ARp
...
optional arguments which are passed to FitARz or FitARp

Value

A list with class name "FitAR" and components:
loglikelihood
value of the loglikelihood
phiHat
coefficients in AR(p) -- including 0's
sigsqHat
innovation variance estimate
muHat
estimate of the mean
covHat
covariance matrix of the coefficient estimates
zetaHat
transformed parameters, length(zetaHat) = \# coefficients estimated
RacfMatrix
residual autocorrelations and sd for lags 1, ..., lag.max
LjungBox
table of Ljung-Box portmanteau test statistics
SubsetQ
parameters in AR(p) -- including 0's
res
innovation residuals, same length as z
fits
fitted values, same length as z
pvec
lags used in AR model
demean
TRUE if mean estimated otherwise assumed zero
FitMethod
"MLE" or "LS"
IterationCount
number of iterations in mean mle estimation
convergence
value returned by optim -- should be 0
MLEMeanQ
TRUE if mle for mean algorithm used
ARModel
"ARp" if FitARp used, otherwise "ARz"
tsp
tsp(z)
call
result from match.call() showing how the function was called
ModelTitle
description of model
DataTitle
returns attr(z,"title")
z
time series data input

Details

The exact MLE for AR(p) and subset ARz use methods described in McLeod and Zhang (2006). In addition the exact MLE for the mean can be computed using an iterative backfitting approach described in McLeod and Zhang (2008).

The subset ARp model can be fit by exact MLE using the R function arima or by least-squares.

The default for lag.max is min(300, ceiling(length(z)/5))

References

McLeod, A.I. and Zhang, Y. (2006). Partial Autocorrelation Parameterization for Subset Autoregression. Journal of Time Series Analysis, 27, 599-612.

McLeod, A.I. and Zhang, Y. (2008a). Faster ARMA Maximum Likelihood Estimation, Computational Statistics and Data Analysis, 52-4, 2166-2176. DOI link: http://dx.doi.org/10.1016/j.csda.2007.07.020.

McLeod, A.I. and Zhang, Y. (2008b, Submitted). Improved Subset Autoregression: With R Package. Journal of Statistical Software.

See Also

FitARp, FitARz, GetFitARz, FitARp, GetFitARpMLE, RacfPlot

Examples

Run this code
#First example: fit exact MLE to AR(4) 
set.seed(3323)
phi<-c(2.7607,-3.8106,2.6535,-0.9238)
z<-SimulateGaussianAR(phi,1000)
ans<-FitAR(z,4,MeanMLEQ=TRUE)
ans
coef(ans)

## Not run:  #save time building package!
# #Second example: compare with sample mean result
# ans<-FitAR(z,4)
# coef(ans)
# 
# #Third example: fit subset ARz and ARp models
# z<-log(lynx)
# FitAR(z, c(1,2,4,7,10,11))
# #now obtain exact MLE for Mean as well
# FitAR(z, c(1,2,4,7,10,11), MeanMLE=TRUE)
# #subset ARp using exact MLE
# FitAR(z, c(1,2,4,7,10,11), ARModel="ARp", MLEQ=TRUE)
# #subset ARp using LS
# FitAR(z, c(1,2,4,7,10,11), ARModel="ARp", MLEQ=FALSE)
# #or
# FitAR(z, c(1,2,4,7,10,11), ARModel="ARp")
# 
# 
# #Fourth example: use UBIC model selection to fit subset models
# z<-log(lynx)
# #ARz case
# p<-SelectModel(z,ARModel="ARz")[[1]]$p
# ans1<-FitAR(z, p)
# ans1
# ans1$ARModel
# 
# #ARp case
# p<-SelectModel(z,ARModel="ARp")[[1]]$p
# ans2<-FitAR(z, p, ARModel="ARp")
# ans2
# ans2$ARModel
# 
# #Fifth example: fit a full AR(p) using AIC/BIC methods
# z<-log(lynx)
# #BIC
# p<-SelectModel(z,ARModel="AR")[1,1]
# ans1<-FitAR(z, p)
# ans1
# #AIC
# p<-SelectModel(z, ARModel="AR", Criterion="AIC")[1,1]
# ans2<-FitAR(z, p)
# ans2
# ## End(Not run)

#Sixth Example: Subset autoregression depends on lag.max!
#Because least-squares is used, P=lag.max observations are
#  are deleted. This causes different results depending on lag.max.
#This phenomenon does not happen with "ARz" subset models
#ARp models depend on lag.max
SelectModel(z,lag.max=15,ARModel="ARp", Criterion="BIC", Best=1)
SelectModel(z,lag.max=20,ARModel="ARp", Criterion="BIC", Best=1)
#ARz models do NOT depend in this way on lag.max.
#Obviously if some lags beyond the initial value of lag.max are
# found to be important, then there is a dependence but this
# is not a problem!
SelectModel(z,lag.max=15,ARModel="ARz", Criterion="BIC", Best=1)
SelectModel(z,lag.max=20,ARModel="ARz", Criterion="BIC", Best=1)

Run the code above in your browser using DataLab