This function defines the generalized beta type 1 distribution, a four parameter distribution.
The function GB1 creates a gamlss.family object which can be used to fit the distribution using the function
gamlss(). Note the range of the response variable is from zero to one.
The functions dGB1,
GB1, qGB1 and rGB1 define the density,
distribution function, quantile function and random
generation for the generalized beta type 1 distribution.
GB1(mu.link = "logit", sigma.link = "logit", nu.link = "log",
tau.link = "log")
dGB1(x, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, log = FALSE)
pGB1(q, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, lower.tail = TRUE,
log.p = FALSE)
qGB1(p, mu = 0.5, sigma = 0.4, nu = 1, tau = 1, lower.tail = TRUE,
log.p = FALSE)
rGB1(n, mu = 0.5, sigma = 0.4, nu = 1, tau = 1)Defines the mu.link, with "identity" link as the default for the mu parameter.
Defines the sigma.link, with "log" link as the default for the sigma parameter.
Defines the nu.link, with "log" link as the default for the nu parameter.
Defines the tau.link, with "log" link as the default for the tau parameter.
vector of quantiles
vector of location parameter values
vector of scale parameter values
vector of skewness nu parameter values
vector of kurtosis tau parameter values
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
vector of probabilities.
number of observations. If length(n) > 1, the length is
taken to be the number required
GB1() returns a gamlss.family object which can be used to fit the GB1 distribution in the
gamlss() function.
dGB1() gives the density, pGB1() gives the distribution
function, qGB1() gives the quantile function, and rGB1()
generates random deviates.
The qSHASH and rSHASH are slow since they are relying on golden section for finding the quantiles
The probability density function of the Generalized Beta type 1, (GB1), is defined as
$$f(y|\mu,\sigma\,\nu,\tau)= \frac{\tau \nu^\beta y^{\tau\alpha-1} (1-y^\tau)^{\beta-1}}{B(\alpha,\beta)[\nu+(1-\nu) y^\tau]^{\alpha+\beta}}$$
where \( 0 < y < 1 \), \(\alpha = \mu(1-\sigma^2)/\sigma^2\) and \(\beta=(1-\mu)(1-\sigma^2)/\sigma^2\), and \(\alpha>0\), \(\beta>0\). Note the \(\mu=\alpha /(\alpha+\beta)\), \(\sigma = (\alpha+\beta+1)^{-1/2}\). .
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M. Rigby R. A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
# NOT RUN {
GB1() #
y<- rGB1(200, mu=.1, sigma=.6, nu=1, tau=4)
hist(y)
# library(gamlss)
# histDist(y, family=GB1, n.cyc=60)
curve(dGB1(x, mu=.1 ,sigma=.6, nu=1, tau=4), 0.01, 0.99, main = "The GB1
density mu=0.1, sigma=.6, nu=1, tau=4")
# }
Run the code above in your browser using DataLab