Learn R Programming

gamlss.dist (version 4.3-4)

GG: Generalized Gamma distribution for fitting a GAMLSS

Description

The function GG defines the generalized gamma distribution, a three parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(). The parameterization used has the mean of the distribution equal to mu and the variance equal to $(\sigma^2)(\mu^2)$. The functions dGG, pGG, qGG and rGG define the density, distribution function, quantile function and random generation for the specific parameterization of the generalized gamma distribution defined by function GG.

Usage

GG(mu.link = "log", sigma.link = "log", 
                       nu.link = "identity")
dGG(x, mu=1, sigma=0.5, nu=1,  
                      log = FALSE)
pGG(q, mu=1, sigma=0.5, nu=1,  lower.tail = TRUE, 
                     log.p = FALSE)
qGG(p, mu=1, sigma=0.5, nu=1,  lower.tail = TRUE, 
                     log.p = FALSE )
rGG(n, mu=1, sigma=0.5, nu=1)

Arguments

mu.link
Defines the mu.link, with "log" link as the default for the mu parameter, other links are "inverse" and "identity"
sigma.link
Defines the sigma.link, with "log" link as the default for the sigma parameter, other links are "inverse" and "identity"
nu.link
Defines the nu.link, with "identity" link as the default for the sigma parameter, other links are $1/nu^2$ and "log"
x,q
vector of quantiles
mu
vector of location parameter values
sigma
vector of scale parameter values
nu
vector of shape parameter values
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x],="" otherwise,="" p[x=""> x]
p
vector of probabilities
n
number of observations. If length(n) > 1, the length is taken to be the number required

Value

  • GG() returns a gamlss.family object which can be used to fit a generalized gamma distribution in the gamlss() function. dGG() gives the density, pGG() gives the distribution function, qGG() gives the quantile function, and rGG() generates random deviates.

Details

The specific parameterization of the generalized gamma distribution used in GG is $$f(y|\mu,\sigma,\nu)= \frac{\theta^\theta z^\theta \nu e^(-\theta z)}{(\Gamma(\theta)y)}$$ where $z =(y/\mu)^\nu$, $\theta = 1/(\sigma^2|\nu|^2)$ for y>0, $\mu>0$, $\sigma>0$ and $-\infty

References

Lopatatzidis, A. and Green, P. J. (2000), Nonparametric quantile regression using the gamma distribution, unpublished.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.org/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

gamlss.family, GA

Examples

Run this code
y<-rGG(100,mu=1,sigma=0.1, nu=-.5) # generates 100 random observations  
hist(y)
# library(gamlss)
#histDist(y, family=GG)
#m1 <-gamlss(y~1,family=GG)
#prof.dev(m1, "nu", min=-2, max=2, step=0.2)

Run the code above in your browser using DataLab