GG(mu.link = "log", sigma.link = "log",
nu.link = "identity")
dGG(x, mu=1, sigma=0.5, nu=1,
log = FALSE)
pGG(q, mu=1, sigma=0.5, nu=1, lower.tail = TRUE,
log.p = FALSE)
qGG(p, mu=1, sigma=0.5, nu=1, lower.tail = TRUE,
log.p = FALSE )
rGG(n, mu=1, sigma=0.5, nu=1)
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R.
Accompanying documentation in the current GAMLSS help files, (see also
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R.
Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007,
gamlss.family
, GA
y<-rGG(100,mu=1,sigma=0.1, nu=-.5) # generates 100 random observations
hist(y)
# library(gamlss)
#histDist(y, family=GG)
#m1 <-gamlss(y~1,family=GG)
#prof.dev(m1, "nu", min=-2, max=2, step=0.2)
Run the code above in your browser using DataLab