gamlss.family
object to be used for a
GAMLSS fitting using the function gamlss()
.
The functions dGT
,
pGT
, qGT
and rGT
define the density,
distribution function, quantile function and random
generation for the generalized t distribution.GT(mu.link = "identity", sigma.link = "log", nu.link = "log",
tau.link = "log")
dGT(x, mu = 0, sigma = 1, nu = 3, tau = 1.5, log = FALSE)
pGT(q, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE,
log.p = FALSE)
qGT(p, mu = 0, sigma = 1, nu = 3, tau = 1.5, lower.tail = TRUE,
log.p = FALSE)
rGT(n, mu = 0, sigma = 1, nu = 3, tau = 1.5)
mu.link
, with "identity" link as the default for the mu
parameter.sigma.link
, with "log" link as the default for the sigma
parameter.nu.link
, with "log" link as the default for the nu
parameter.tau.link
, with "log" link as the default for the tau
parameter.nu
parameter valuestau
parameter valueslength(n) > 1
, the length is
taken to be the number requiredGT()
returns a gamlss.family
object which can be used to fit the GT distribution in the
gamlss()
function.
dGT()
gives the density, pGT()
gives the distribution
function, qGT()
gives the quantile function, and rGT()
generates random deviates.GT
), , is defined as
$$f(y|\mu,\sigma\,\nu,\tau)= \tau \left{2\sigma \nu^{1/\tau} B\left(\frac{1}{\tau},\nu\right)[1+|z|^{\tau}/\nu]^{\nu+1/\tau} \right}^{-1}$$where $-\infty < y < \infty$, $z=(y-\mu)/\sigma$ $\mu=(-\infty,+\infty)$, $\sigma>0$, $\nu>0$ and $\tau>0$.
Stasinopoulos D. M. Rigby R. A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R.
Accompanying documentation in the current GAMLSS help files, (see also
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R.
Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007,
gamlss.family
, JSU
, BCT
GT() #
y<- rGT(200, mu=5, sigma=1, nu=1, tau=4)
hist(y)
curve(dGT(x, mu=5 ,sigma=2,nu=1, tau=4), -2, 11,
main = "The GT density mu=5 ,sigma=1, nu=1, tau=4")
# library(gamlss)
# m1<-gamlss(y~1, family=GT)
Run the code above in your browser using DataLab