Density, distribution function, quantile function, hazard function,
cumulative hazard function, and random
generation for the Gompertz distribution with parameters
shape
and scale
.
dgompertz(x, shape = 1, scale = 1, log = FALSE, param = c("default", "canonical"))
pgompertz(q, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE,
param = c("default", "canonical"))
qgompertz(p, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE,
param = c("default", "canonical"))
hgompertz(x, shape = 1, scale = 1, log = FALSE, param = c("default", "canonical"))
Hgompertz(x, shape = 1, scale = 1, log.p = FALSE, param = c("default", "canonical"))
rgompertz(n, shape = 1, scale = 1, param = c("default", "canonical"))
vector of quantiles.
vector of probabilities.
number of observations. If length(n) > 1
, the length
is taken to be the number required.
Parameters: shape, defaulting to 1, and scale, defaulting to 1.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are \(P(X \le x)\), otherwise, \(P(X > x)\).
See 'details' below.
dgompertz
gives the density,
pgompertz
gives the distribution function,
qgompertz
gives the quantile function,
hgompertz
gives the hazard function,
Hgompertz
gives the cumulative hazard function, and
rgompertz
generates random deviates.
Invalid arguments will result in return value NaN
, with a warning.
The Gompertz distribution with shape
parameter \(a\) and
scale
parameter \(\sigma\) has hazard given by
$$h(x) = a \exp(x/\sigma)$$
for \(x \ge 0\).
If param = "canonical"
, then then a --> a/b, so that b is a
true scale parameter (for any fixed a), and b is an 'AFT parameter'.