LSCV bandwidth for 1- to 6-dimensional data
Hlscv(x, Hstart, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0,
verbose=FALSE, optim.fun="nlm", trunc)
Hlscv.diag(x, Hstart, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0,
verbose=FALSE, optim.fun="nlm", trunc)
hlscv(x, binned=TRUE, bgridsize, amise=FALSE, deriv.order=0)
Hucv(...)
Hucv.diag(...)
hucv(...)
vector or matrix of data values
initial bandwidth matrix, used in numerical optimisation
flag for binned kernel estimation. Default is FALSE.
vector of binning grid sizes
flag to return the minimal LSCV value. Default is FALSE.
derivative order
flag to print out progress information. Default is FALSE.
optimiser function: one of nlm
or optim
parameter to control truncation for numerical optimisation. Default is 4 for density.deriv>0, otherwise no truncation. For details see below.
parameters as above
LSCV bandwidth. If amise=TRUE
then the minimal LSCV value is returned too.
hlscv
is the univariate LSCV
selector of Bowman (1984) and Rudemo (1982). Hlscv
is a
multivariate generalisation of this. Use Hlscv
for unconstrained
bandwidth matrices and Hlscv.diag
for diagonal bandwidth matrices.
Hucv
, Hucv.diag
and hucv
are aliases with UCV
unbiased cross validation instead of LSCV.
Truncation of the parameter space is usually required for the LSCV selector,
for r > 0, to find a reasonable solution to the numerical optimisation.
If a candidate matrix H
is
such that det(H)
is not in [1/trunc, trunc]*det(H0)
or
abs(LSCV(H)) > trunc*abs(LSCV0)
then the LSCV(H)
is reset to LSCV0
where
H0=Hns(x)
and LSCV0=LSCV(H0)
.
For details about the advanced options for binned,Hstart
,
see Hpi
.
Bowman, A. (1984) An alternative method of cross-validation for the smoothing of kernel density estimates. Biometrika. 71, 353-360.
Rudemo, M. (1982) Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics. 9, 65-78.
# NOT RUN {
library(MASS)
data(forbes)
Hlscv(forbes)
hlscv(forbes$bp)
# }
Run the code above in your browser using DataLab