data(bifactor)
omega
function or using sem. The bifactor model is typically used in measures of cognitive ability.The 14 variables are ordered to reflect 3 spatial tests, 3 mental speed tests, 4 motor speed tests, and 4 verbal tests. The sample size is 355.
Another data set from Holzinger (Holzinger.9) represents 9 cognitive abilities (Holzinger, 1939) and is used as an example by Karl Joreskog (2003) for factor analysis by the MINRES algorithm and also appears in the LISREL manual as example NPV.KM.
Another classic data set is the 9 variable Thurstone problem which is discussed in detail by R. P. McDonald (1985, 1999) and and is used as example in the sem package as well as in the PROC CALIS manual for SAS. These nine tests were grouped by Thurstone, 1941 (based on other data) into three factors: Verbal Comprehension, Word Fluency, and Reasoning. The original data came from Thurstone and Thurstone (1941) but were reanalyzed by Bechthold (1961) who broke the data set into two. McDonald, in turn, selected these nine variables from a larger set of 17. The sample size is 213.
Another set of 9 cognitive variables attributed to Thurstone (1933) is the data set of 4,175 students reported by Professor Brigham of Princeton to the College Entrance Examination Board. This set does not show a clear bifactor solution but is included as a demonstration of the differences between a maximimum likelihood factor analysis solution versus a principal axis factor solution.
More recent applications of the bifactor model are to the measurement of psychological status. The Reise data set is a correlation matrix based upon >35,000 observations to the Consumer Assessment of Health Care Provideers and Systems survey instrument. Reise, Morizot, and Hays (2007) describe a bifactor solution based upon 1,000 cases.
The five factors from Reise et al. reflect Getting care quickly (1-3), Doctor communicates well (4-7), Courteous and helpful staff (8,9), Getting needed care (10-13), and and Health plan customer service (14-16).
The two Bechtoldt data sets are two samples from Thurstone (1941). They include 17 variables, 9 of which were used by McDonald to form the Thurstone data set. The sample sizes are 212 and 213 respectively. The six proposed factors reflect memory, verbal, words, space, number and reasoning with three markers for all expect the rote memory factor. 9 variables from this set appear in Thurstone.
Two more data sets with similar structures are found in the Harman
data set.
Holzinger, Karl and Swineford, Frances (1937) The Bi-factor method. Psychometrika, 2, 41-54
Holzinger, K., & Swineford, F. (1939). A study in factor analysis: The stability of a bifactor solution. Supplementary Educational Monograph, no. 48. Chicago: University of Chicago Press.
McDonald, Roderick P. (1999) Test theory: A unified treatment. L. Erlbaum Associates. Mahwah, N.J.
Reise, Steven and Morizot, Julien and Hays, Ron (2007) The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research. 16, 19-31.
Thurstone, Louis Leon (1933) The theory of multiple factors. Edwards Brothers, Inc. Ann Arbor
Thurstone, Louis Leon and Thurstone, Thelma (Gwinn). (1941) Factorial studies of intelligence. The University of Chicago Press. Chicago, Il.
data(bifactor)
if(!require(GPA.rotation)) {message("I am sorry, to run omega requires GPA.rotation") } else {
holz <- omega(Holzinger,4, title = "14 ability tests from Holzinger-Swineford")
bf <- omega(Reise,5,title="16 health items from Reise")
omega(Reise,5,labels=colnames(Reise),title="16 health items from Reise")
thur.bf <- omega(Thurstone,title="9 variables from Thurstone")
}
Run the code above in your browser using DataLab