## Not run:
# ##############################################################
# ## Quarterly, west German investment, income, and consumption
# ## from first quarter of 1960 to fourth quarter of 1982:
# ##############################################################
# data(WestGerman)
# DiffData <- matrix(numeric(3 * 91), ncol = 3)
# for (i in 1:3)
# DiffData[, i] <- diff(log(WestGerman[, i]), lag = 1)
# fit <- ar.ols(DiffData, intercept = TRUE, order.max = 2)
# lags <- c(5,10)
# ## Apply the test statistic on the fitted model
# Hosking(fit,lags,order = 2) ## Correct
# Hosking(fit,lags) ## Correct
# ## Apply the test statistic on the residuals
# res <- ts((fit$resid)[-(1:2), ])
# Hosking(res,lags,order = 2) ## Correct
# Hosking(res,lags) ## Wrong
# ##############################################################
# ## Write a function to fit a model
# ## Apply portmanteau test on fitted obj with class "list"
# ##############################################################
# ## Example 1
# FitModel <- function(data){
# fit <- ar.ols(data, intercept = TRUE, order.max = 2)
# order <- 2
# res <- res <- ts((fit$resid)[-(1:2), ])
# list(res=res,order=order)
# }
# Fit <- FitModel(DiffData)
# Hosking(Fit)
# ##
# ## Example 2
# library("TSA")
# FitModel <- function(data){
# fit <- TSA::tar(y=log(data),p1=4,p2=4,d=3,a=0.1,b=0.9,print=FALSE)
# res <- ts(fit$std.res)
# p1 <- fit$p1
# p2 <- fit$p2
# order <- max(p1, p2)
# parSpec <- list(res=res,order=order)
# parSpec
# }
# data(prey.eq)
# Fit <- FitModel(prey.eq)
# Hosking(Fit)
# ## End(Not run)
Run the code above in your browser using DataLab