Learn R Programming

ROptEstOld (version 1.2.0)

IC: Generating function for IC-class

Description

Generates an object of class "IC".

Usage

IC(name, Curve = EuclRandVarList(RealRandVariable(Map = list(function(x){x}), 
                                        Domain = Reals())), 
   Risks, Infos, CallL2Fam = call("L2ParamFamily"))

Arguments

name

Object of class "character".

CallL2Fam

object of class "call": creates an object of the underlying L2-differentiable parametric family.

Curve

object of class "EuclRandVarList".

Risks

object of class "list": list of risks; cf. RiskType-class.

Infos

matrix of characters with two columns named method and message: additional informations.

Value

Object of class "IC"

References

Hampel et al. (1986) Robust Statistics. The Approach Based on Influence Functions. New York: Wiley.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.

See Also

IC-class

Examples

Run this code
# NOT RUN {
IC1 <- IC()
plot(IC1)

## The function is currently defined as
IC <- function(name, Curve = EuclRandVarList(RealRandVariable(Map = list(function(x){x})), 
               Domain = Reals()), Risks, Infos, CallL2Fam = call("L2ParamFamily")){
    if(missing(name))
        name <- "square integrable (partial) influence curve"
    if(missing(Risks))
        Risks <- list()
    if(missing(Infos))
        Infos <- matrix(c(character(0),character(0)), ncol=2,
                     dimnames=list(character(0), c("method", "message")))
    return(new("IC", name = name, Curve = Curve, Risks = Risks,
               Infos = Infos, CallL2Fam = CallL2Fam))
}
# }

Run the code above in your browser using DataLab