dinv.gaussian(x, mu, lambda, log = FALSE)
pinv.gaussian(q, mu, lambda)
rinv.gaussian(n, mu, lambda)
length(n) > 1
then the length
is taken to be the number required.log = TRUE
then the logarithm of the density is returned.dinv.gaussian
gives the density,
pinv.gaussian
gives the distribution function, and rinv.gaussian
generates random deviates.inv.gaussianff
, the Taraldsen, G. and Lindqvist, B. H. (2005) The multiple roots simulation algorithm, the inverse Gaussian distribution, and the sufficient conditional Monte Carlo method. Preprint Statistics No. 4/2005, Norwegian University of Science and Technology, Trondheim, Norway.
inv.gaussianff
,
waldff
.x <- seq(-0.05, 4, len = 300)
plot(x, dinv.gaussian(x, mu = 1, lambda = 1), type = "l",
col = "blue",las = 1, main =
"blue is density, orange is cumulative distribution function")
abline(h = 0, col = "gray", lty = 2)
lines(x, pinv.gaussian(x, mu = 1, lambda = 1), type = "l", col = "orange")
Run the code above in your browser using DataLab