### Run simulations of the "Ishigami" model
### for a random sample of input combinations
## Example I: by using the class constructor: mtkIshigamiEvaluator()
#
# Input the factors used in the "Ishigami" model
data(Ishigami.factors)
# Build the workflow:
# 1) specify the design process
exp1.designer <- mtkNativeDesigner(design = "BasicMonteCarlo",
information = list(size=20) )
# 2) specify the evaluation process;
exp1.evaluator <- mtkIshigamiEvaluator()
# 3) specify the workflow
exp1 <- mtkExpWorkflow(expFactors = Ishigami.factors,
processesVector = c(design=exp1.designer,
evaluate=exp1.evaluator) )
# Run the workflow and report the results.
run(exp1)
print(exp1)
## Example II: by using the class constructor: mtkNativeEvaluator()
# Generate the Ishigami input factors
data(Ishigami.factors)
# Build the workflow:
# 1) specify the design process
exp1.designer <- mtkNativeDesigner(design = "BasicMonteCarlo",
information = list(size=20) )
# 2) specify the evaluation process;
exp1.evaluator <- mtkNativeEvaluator(model="Ishigami")
# 3) specify the workflow
exp1 <- mtkExpWorkflow(expFactors = Ishigami.factors,
processesVector = c(design=exp1.designer, evaluate=exp1.evaluator) )
# Run the workflow and report the results.
run(exp1)
print(exp1)
## Example III: by using the generic class constructor: mtkEvaluator()
# Generate the Ishigami input factors
data(Ishigami.factors)
# Build the workflow:
# 1) specify the design process
exp1.designer <- mtkNativeDesigner(
design = "BasicMonteCarlo", information = list(size=20) )
# 2) specify the evaluation process;
exp1.evaluator <- mtkEvaluator(protocol = "R", site = "mtk", service = "Ishigami")
# 3) specify the workflow
exp1 <- mtkExpWorkflow(expFactors = Ishigami.factors,
processesVector = c(design=exp1.designer, evaluate=exp1.evaluator) )
# Run the workflow and report the results.
run(exp1)
print(exp1)
Run the code above in your browser using DataLab