JackStraw: Determine statistical significance of PCA scores.
Description
Randomly permutes a subset of data, and calculates projected PCA scores for
these 'random' genes. Then compares the PCA scores for the 'random' genes
with the observed PCA scores to determine statistical signifance. End result
is a p-value for each gene's association with each principal component.
Proportion of the data to randomly permute for each
replicate
verbose
Print progress bar showing the number of replicates
that have been processed.
maxit
maximum number of iterations to be performed by the irlba function of RunPCA
Value
Returns a Seurat object where JS(object = object[['pca']], slot = 'empirical')
represents p-values for each gene in the PCA analysis. If ProjectPCA is
subsequently run, JS(object = object[['pca']], slot = 'full') then
represents p-values for all genes.
# NOT RUN {data("pbmc_small")
pbmc_small = suppressWarnings(JackStraw(pbmc_small))
head(JS(object = pbmc_small[['pca']], slot = 'empirical'))
# }# NOT RUN {# }