Learn R Programming

⚠️There's a newer version (2.19.1) of this package.Take me there.

mlr (version 2.13)

Machine Learning in R

Description

Interface to a large number of classification and regression techniques, including machine-readable parameter descriptions. There is also an experimental extension for survival analysis, clustering and general, example-specific cost-sensitive learning. Generic resampling, including cross-validation, bootstrapping and subsampling. Hyperparameter tuning with modern optimization techniques, for single- and multi-objective problems. Filter and wrapper methods for feature selection. Extension of basic learners with additional operations common in machine learning, also allowing for easy nested resampling. Most operations can be parallelized.

Copy Link

Version

Install

install.packages('mlr')

Monthly Downloads

9,043

Version

2.13

License

BSD_2_clause + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

August 28th, 2018

Functions in mlr (2.13)

crossover

Crossover.
downsample

Downsample (subsample) a task or a data.frame.
Aggregation

Aggregation object.
BenchmarkResult

BenchmarkResult object.
makeClassifTask

Create a classification, regression, survival, cluster, cost-sensitive classification or multilabel task.
generateFeatureImportanceData

Generate feature importance.
convertMLBenchObjToTask

Convert a machine learning benchmark / demo object from package mlbench to a task.
costiris.task

Iris cost-sensitive classification task.
generateFilterValuesData

Calculates feature filter values.
TaskDesc

Description object for task.
ConfusionMatrix

Confusion matrix
estimateResidualVariance

Estimate the residual variance.
extractFDAFPCA

Extract functional principal component analysis features.
changeData

Change Task Data
generateCalibrationData

Generate classifier calibration data.
getBMRTuneResults

Extract the tuning results from a benchmark result.
getCaretParamSet

Get tuning parameters from a learner of the caret R-package.
getDefaultMeasure

Get default measure.
generateCritDifferencesData

Generate data for critical-differences plot.
FailureModel

Failure model.
getFailureModelDump

Return the error dump of FailureModel.
LearnerProperties

Query properties of learners.
getMlrOptions

Returns a list of mlr's options.
Prediction

Prediction object.
checkLearner

Exported for internal use only.
ResamplePrediction

Prediction from resampling.
RLearner

Internal construction / wrapping of learner object.
TuneMultiCritResult

Result of multi-criteria tuning.
TuneResult

Result of tuning.
bc.task

Wisconsin Breast Cancer classification task.
getMultilabelBinaryPerformances

Retrieve binary classification measures for multilabel classification predictions.
MeasureProperties

Query properties of measures.
TuneControl

Control object for tuning
filterFeatures

Filter features by thresholding filter values.
getNestedTuneResultsOptPathDf

Get the opt.paths from each tuning step from the outer resampling.
benchmark

Benchmark experiment for multiple learners and tasks.
TuneMultiCritControl

Create control structures for multi-criteria tuning.
calculateROCMeasures

Calculate receiver operator measures.
capLargeValues

Convert large/infinite numeric values in a data.frame or task.
ResampleResult

ResampleResult object.
getBMRMeasureIds

Return measures IDs used in benchmark.
convertBMRToRankMatrix

Convert BenchmarkResult to a rank-matrix.
configureMlr

Configures the behavior of the package.
getNestedTuneResultsX

Get the tuned hyperparameter settings from a nested tuning.
getBMRMeasures

Return measures used in benchmark.
dropFeatures

Drop some features of task.
bh.task

Boston Housing regression task.
createDummyFeatures

Generate dummy variables for factor features.
getTaskCosts

Extract costs in task.
calculateConfusionMatrix

Confusion matrix.
getTaskData

Extract data in task.
createSpatialResamplingPlots

Create (spatial) resampling plot objects.
getBMRPredictions

Extract the predictions from a benchmark result.
getBMRTaskDescriptions

Extract all task descriptions from benchmark result (DEPRECATED).
hasProperties

Deprecated, use hasLearnerProperties instead.
extractFDAMultiResFeatures

Multiresolution feature extraction.
extractFDAWavelets

Discrete Wavelet transform features.
classif.featureless

Featureless classification learner.
checkPredictLearnerOutput

Check output returned by predictLearner.
getFailureModelMsg

Return error message of FailureModel.
friedmanPostHocTestBMR

Perform a posthoc Friedman-Nemenyi test.
helpLearner

Access help page of learner functions.
listFilterMethods

List filter methods.
getBMRAggrPerformances

Extract the aggregated performance values from a benchmark result.
estimateRelativeOverfitting

Estimate relative overfitting.
listLearnerProperties

List the supported learner properties
getBMRFeatSelResults

Extract the feature selection results from a benchmark result.
extractFDAFeatures

Extract features from functional data.
lung.task

NCCTG Lung Cancer survival task.
extractFDAFourier

Fast Fourier transform features.
getFeatSelResult

Returns the selected feature set and optimization path after training.
generateHyperParsEffectData

Generate hyperparameter effect data.
getBMRLearnerShortNames

Return learner short.names used in benchmark.
generateLearningCurveData

Generates a learning curve.
getPredictionTaskDesc

Get summarizing task description from prediction.
friedmanTestBMR

Perform overall Friedman test for a BenchmarkResult.
generatePartialDependenceData

Generate partial dependence.
getBMRLearners

Return learners used in benchmark.
fuelsubset.task

FuelSubset functional data regression task.
getFilterValues

Calculates feature filter values.
makeAggregation

Specify your own aggregation of measures.
getBMRFilteredFeatures

Extract the feature selection results from a benchmark result.
generateThreshVsPerfData

Generate threshold vs. performance(s) for 2-class classification.
getLearnerPackages

Get the required R packages of the learner.
getProbabilities

Deprecated, use getPredictionProbabilities instead.
getFilteredFeatures

Returns the filtered features.
getBMRTaskDescs

Extract all task descriptions from benchmark result.
makeExtractFDAFeatMethod

Constructor for FDA feature extraction methods.
getClassWeightParam

Get the class weight parameter of a learner.
makeExtractFDAFeatsWrapper

Fuse learner with an extractFDAFeatures method.
getBMRTaskIds

Return task ids used in benchmark.
getOOBPreds

Extracts out-of-bag predictions from trained models.
getLearnerParVals

Get the parameter values of the learner.
makeModelMultiplexer

Create model multiplexer for model selection to tune over multiple possible models.
makeMultilabelClassifierChainsWrapper

Use classifier chains method (CC) to create a multilabel learner.
makeModelMultiplexerParamSet

Creates a parameter set for model multiplexer tuning.
getHomogeneousEnsembleModels

Deprecated, use getLearnerModel instead.
getHyperPars

Get current parameter settings for a learner.
getRRDump

Return the error dump of ResampleResult.
getBMRLearnerIds

Return learner ids used in benchmark.
getRRPredictionList

Get list of predictions for train and test set of each single resample iteration.
getLearnerType

Get the type of the learner.
getConfMatrix

Confusion matrix.
getLearnerShortName

Get the short name of the learner.
getStackedBaseLearnerPredictions

Returns the predictions for each base learner.
getTaskClassLevels

Get the class levels for classification and multilabel tasks.
getFeatureImportance

Calculates feature importance values for trained models.
getFeatureImportanceLearner.regr.randomForestSRC

Calculates feature importance values for a given learner.
makeMultilabelDBRWrapper

Use dependent binary relevance method (DBR) to create a multilabel learner.
getTaskSize

Get number of observations in task.
getTaskTargetNames

Get the name(s) of the target column(s).
impute

Impute and re-impute data
iris.task

Iris classification task.
getBMRModels

Extract all models from benchmark result.
isFailureModel

Is the model a FailureModel?
getLearnerId

Get the ID of the learner.
getOOBPredsLearner

Provides out-of-bag predictions for a given model and the corresponding learner.
getTaskId

Get the id of the task.
getLearnerModel

Get underlying R model of learner integrated into mlr.
joinClassLevels

Join some class existing levels to new, larger class levels for classification problems.
makeRemoveConstantFeaturesWrapper

Fuse learner with removal of constant features preprocessing.
getBMRPerformances

Extract the test performance values from a benchmark result.
getLearnerParamSet

Get the parameter set of the learner.
getTaskNFeats

Get number of features in task.
makeConstantClassWrapper

Wraps a classification learner to support problems where the class label is (almost) constant.
getLearnerPredictType

Get the predict type of the learner.
getParamSet

Get a description of all possible parameter settings for a learner.
makeResampleDesc

Create a description object for a resampling strategy.
makeCostMeasure

Creates a measure for non-standard misclassification costs.
getPredictionDump

Return the error dump of a failed Prediction.
getPredictionProbabilities

Get probabilities for some classes.
makeFeatSelWrapper

Fuse learner with feature selection.
gunpoint.task

Gunpoint functional data classification task.
makeMulticlassWrapper

Fuse learner with multiclass method.
makeFilter

Create a feature filter.
getTaskFeatureNames

Get feature names of task.
getPredictionResponse

Get response / truth from prediction object.
getRRTaskDescription

Get task description from resample results (DEPRECATED).
getResamplingIndices

Get the resampling indices from a tuning or feature selection wrapper..
hasFunctionalFeatures

Check whether the object conatins functional features.
getRRPredictions

Get predictions from resample results.
makeMultilabelBinaryRelevanceWrapper

Use binary relevance method to create a multilabel learner.
listMeasures

Find matching measures.
makePreprocWrapperCaret

Fuse learner with preprocessing.
listTaskTypes

List the supported task types in mlr
makeRLearner.classif.fdausc.glm

Classification of functional data by Generalized Linear Models.
makeResampleInstance

Instantiates a resampling strategy object.
makeCostSensClassifWrapper

Wraps a classification learner for use in cost-sensitive learning.
getRRTaskDesc

Get task description from resample results (DEPRECATED).
getTaskTargets

Get target data of task.
getTaskFormula

Get formula of a task.
getTaskType

Get the type of the task.
getTuneResult

Returns the optimal hyperparameters and optimization path after training.
getTuneResultOptPath

Get the optimization path of a tuning result.
makeCostSensRegrWrapper

Wraps a regression learner for use in cost-sensitive learning.
makeFilterWrapper

Fuse learner with a feature filter method.
makeDownsampleWrapper

Fuse learner with simple downsampling (subsampling).
makeTuneControlMBO

Create control object for hyperparameter tuning with MBO.
makeSMOTEWrapper

Fuse learner with SMOTE oversampling for imbalancy correction in binary classification.
makeDummyFeaturesWrapper

Fuse learner with dummy feature creator.
getTaskDesc

Get a summarizing task description.
makeTuneControlGrid

Create control object for hyperparameter tuning with grid search.
makeTuneControlIrace

Create control object for hyperparameter tuning with Irace.
makeLearners

Create multiple learners at once.
getTaskDescription

makeTuneControlRandom

Create control object for hyperparameter tuning with random search.
makeMeasure

Construct performance measure.
makeFixedHoldoutInstance

Generate a fixed holdout instance for resampling.
makeRLearner.classif.fdausc.kernel

Learner for kernel classification for functional data.
listLearners

Find matching learning algorithms.
helpLearnerParam

Get specific help for a learner's parameters.
makeFunctionalData

Create a data.frame containing functional features from a normal data.frame.
imputations

Built-in imputation methods.
parallelization

Supported parallelization methods
makeImputeMethod

Create a custom imputation method.
performance

Measure performance of prediction.
makeMultilabelNestedStackingWrapper

Use nested stacking method to create a multilabel learner.
learnerArgsToControl

Convert arguments to control structure.
listMeasureProperties

List the supported measure properties.
makeRLearner.classif.fdausc.np

Learner for nonparametric classification for functional data.
phoneme.task

Phoneme functional data multilabel classification task.
makeMultilabelStackingWrapper

Use stacking method (stacked generalization) to create a multilabel learner.
makeTuneWrapper

Fuse learner with tuning.
pid.task

PimaIndiansDiabetes classification task.
plotBMRBoxplots

Create box or violin plots for a BenchmarkResult.
plotBMRRanksAsBarChart

Create a bar chart for ranks in a BenchmarkResult.
makeTuneControlDesign

Create control object for hyperparameter tuning with predefined design.
plotLearningCurve

Plot learning curve data using ggplot2.
learners

List of supported learning algorithms.
plotPartialDependence

Plot a partial dependence with ggplot2.
makeTuneControlGenSA

Create control object for hyperparameter tuning with GenSA.
predict.WrappedModel

Predict new data.
makeWrappedModel

Induced model of learner.
makeWeightedClassesWrapper

Wraps a classifier for weighted fitting where each class receives a weight.
makeBaggingWrapper

Fuse learner with the bagging technique.
setId

Set the id of a learner object.
setLearnerId

Set the ID of a learner object.
makeChainModel

Only exported for internal use.
makeBaseWrapper

Exported for internal use only.
predictLearner

Predict new data with an R learner.
plotLearnerPrediction

Visualizes a learning algorithm on a 1D or 2D data set.
plotHyperParsEffect

Plot the hyperparameter effects data
makeClassificationViaRegressionWrapper

Classification via regression wrapper.
makeCostSensWeightedPairsWrapper

Wraps a classifier for cost-sensitive learning to produce a weighted pairs model.
reduceBatchmarkResults

Reduce results of a batch-distributed benchmark.
reextractFDAFeatures

Re-extract features from a data set
reimpute

Re-impute a data set
setHyperPars2

Only exported for internal use.
removeConstantFeatures

Remove constant features from a data set.
setHyperPars

Set the hyperparameters of a learner object.
makeCustomResampledMeasure

Construct your own resampled performance measure.
setPredictType

Set the type of predictions the learner should return.
setThreshold

Set threshold of prediction object.
spatial.task

J. Muenchow's Ecuador landslide data set
makeImputeWrapper

Fuse learner with an imputation method.
yeast.task

Yeast multilabel classification task.
subsetTask

Subset data in task.
simplifyMeasureNames

Simplify measure names.
summarizeColumns

Summarize columns of data.frame or task.
makeLearner

Create learner object.
makeUndersampleWrapper

Fuse learner with simple ove/underrsampling for imbalancy correction in binary classification.
makeStackedLearner

Create a stacked learner object.
makeClassifTaskDesc

Exported for internal use.
smote

Synthetic Minority Oversampling Technique to handle class imbalancy in binary classification.
makeOverBaggingWrapper

Fuse learner with the bagging technique and oversampling for imbalancy correction.
makePreprocWrapper

Fuse learner with preprocessing.
mergeSmallFactorLevels

Merges small levels of factors into new level.
normalizeFeatures

Normalize features.
oversample

Over- or undersample binary classification task to handle class imbalancy.
plotThreshVsPerf

Plot threshold vs. performance(s) for 2-class classification using ggplot2.
summarizeLevels

Summarizes factors of a data.frame by tabling them.
mlr-package

mlr: Machine Learning in R
plotBMRSummary

Plot a benchmark summary.
makeTaskDescInternal

Exported for internal use.
plotCalibration

Plot calibration data using ggplot2.
plotTuneMultiCritResult

Plots multi-criteria results after tuning using ggplot2.
selectFeatures

Feature selection by wrapper approach.
makeTuneControlCMAES

Create control object for hyperparameter tuning with CMAES.
setAggregation

Set aggregation function of measure.
setMeasurePars

Set parameters of performance measures
plotROCCurves

Plots a ROC curve using ggplot2.
setPredictThreshold

Set the probability threshold the learner should use.
tuneParams

Hyperparameter tuning.
sonar.task

Sonar classification task.
plotResiduals

Create residual plots for prediction objects or benchmark results.
mergeBenchmarkResults

Merge different BenchmarkResult objects.
measures

Performance measures.
spam.task

Spam classification task.
train

Train a learning algorithm.
trainLearner

Train an R learner.
tuneParamsMultiCrit

Hyperparameter tuning for multiple measures at once.
mlrFamilies

mlr documentation families
plotCritDifferences

Plot critical differences for a selected measure.
mtcars.task

Motor Trend Car Road Tests clustering task.
plotFilterValues

Plot filter values using ggplot2.
regr.featureless

Featureless regression learner.
regr.randomForest

RandomForest regression learner.
removeHyperPars

Remove hyperparameters settings of a learner.
resample

Fit models according to a resampling strategy.
tuneThreshold

Tune prediction threshold.
wpbc.task

Wisonsin Prognostic Breast Cancer (WPBC) survival task.
FeatSelResult

Result of feature selection.
FeatSelControl

Create control structures for feature selection.
addRRMeasure

Compute new measures for existing ResampleResult
aggregations

Aggregation methods.
agri.task

European Union Agricultural Workforces clustering task.
asROCRPrediction

Converts predictions to a format package ROCR can handle.
batchmark

Run machine learning benchmarks as distributed experiments.
analyzeFeatSelResult

Show and visualize the steps of feature selection.