dllogis(x, shape=1, scale=1, log = FALSE)
pllogis(q, shape=1, scale=1, lower.tail = TRUE, log.p = FALSE)
qllogis(p, shape=1, scale=1, lower.tail = TRUE, log.p = FALSE)
rllogis(n, shape=1, scale=1)
hllogis(x, shape=1, scale=1, log=FALSE)
Hllogis(x, shape=1, scale=1, log=FALSE)
length(n) > 1
, the length
is taken to be the number required.dllogis
gives the density,
pllogis
gives the distribution function,
qllogis
gives the quantile function,
hllogis
gives the hazard function,
Hllogis
gives the cumulative hazard function, and
rllogis
generates random deviates.shape
parameter $a>0$ and
scale
parameter $b>0$ has probability density function
$$f(x | a, b) = (a/b) (x/b)^{a-1} / (1 + (x/b)^a)^2$$
and hazard
$$h(x | a, b) = (a/b) (x/b)^{a-1} / (1 + (x/b)^a)$$
for $x>0$. The hazard is decreasing for shape $a\leq 1$, and unimodal for $a > 1$.
The probability distribution function is
$$F(x | a, b) = 1 - 1 / (1 + (x/b)^a)$$
If $a > 1$, the mean is $b c / sin(c)$, and
if $a > 2$ the variance is $b^2 * (2*c/sin(2*c) -
c^2/sin(c)^2)$, where $c = \pi/a$, otherwise these are undefined.dweibull