powered by
Logit(x, min = 0, max = 1) LogitInv(x, min = 0, max = 1)
$$y = log(\frac{p}{(1-p)})$$
where $$p=\frac{(x-min)}{(max-min)}$$
The generized inverse logit function provides the inverse transformation: $$x = p' (max-min) + min$$
where
$$p'=\frac{exp(y)}{(1+exp(y))}$$
logit
x <- seq(0,10, by=0.25) xt <- Logit(x, min=0, max=10) cbind(x,xt) y <- LogitInv(xt, min=0, max=10) cbind(x,xt,y)
Run the code above in your browser using DataLab