# NOT RUN {
## Tea example
data(tea)
res.mca <- MCA(tea,quanti.sup=19,quali.sup=20:36)
summary(res.mca)
plot(res.mca,invisible=c("var","quali.sup","quanti.sup"),cex=0.7)
plot(res.mca,invisible=c("ind","quali.sup","quanti.sup"),cex=0.8)
plot(res.mca,invisible=c("quali.sup","quanti.sup"),cex=0.8)
dimdesc(res.mca)
plotellipses(res.mca,keepvar=1:4)
plotellipses(res.mca,keepvar="Tea")
## Hobbies example
data(hobbies)
res.mca <- MCA(hobbies,quali.sup=19:22,quanti.sup=23)
plot(res.mca,invisible=c("ind","quali.sup"),hab="quali")
plot(res.mca,invisible=c("var","quali.sup"),cex=.5,label="none")
plot(res.mca,invisible=c("ind","var"),hab="quali")
dimdesc(res.mca)
plotellipses(res.mca,keepvar=1:4)
## Specific MCA: some categories are supplementary
data (poison)
res <- MCA (poison[,3:8],excl=c(1,3))
## Example with missing values : use the missMDA package
require(missMDA)
data(vnf)
completed <- imputeMCA(vnf,ncp=2)
res.mca <- MCA(vnf,tab.disj=completed$tab.disj)
# }
Run the code above in your browser using DataLab