Learn R Programming

MEDME (version 1.32.0)

MEDME.predict: Applying the logistic model on MeDIP enrichment data

Description

This allows the probe-level determination of MeDIP smoothed data, as well as absolute and relative methylation levels (AMS and RMS respectively)

Usage

MEDME.predict(data, MEDMEfit, MEDMEextremes = c(1,32), wsize = 1000, wFunction='linear')

Arguments

data
An object of class MEDMEset
MEDMEfit
the model obtained from the MEDME.model function
MEDMEextremes
vector; the background and saturation values as determined by the fitting of the model on the calibration data
wsize
number; the size of the smoothing window, in bp
wFunction
string; the type of weighting function, to choose among linear, exp, log or none

Value

An object of class MEDMEset. The resulting smoothed data, the absolute and relative methylation score (AMS and RMS) are saved in the smoothed, AMS and RMS slots, respectively.

References

http://genome.cshlp.org/cgi/content/abstract/gr.080721.108v1

See Also

smooth, CGcount, MEDME

Examples

Run this code
data(testMEDMEset)
## just an example with the first 1000 probes
testMEDMEset = smooth(data = testMEDMEset[1:1000, ])
library(BSgenome.Hsapiens.UCSC.hg18)
testMEDMEset = CGcount(data = testMEDMEset)
MEDMEmodel = MEDME(data = testMEDMEset, sample = 1, CGcountThr = 1, figName = NULL)
testMEDMEset = MEDME.predict(data = testMEDMEset, MEDMEfit = MEDMEmodel, MEDMEextremes = c(1,32), wsize = 1000, wFunction='linear')

Run the code above in your browser using DataLab